A fast and robust pipeline for populating mobile AR scenes with gamified virtual
characters

Margarita Papaefthymiou'®, Andrew Feng?, Ari Shapiro?, George Papagiannakis'-

'Foundation for Research and Technology Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece
{mpapae02, papagian} @ics.forth.gr
2USC Institute for Creative Technologies, Playa Vista, CA, USA,
{feng, shapiro} @ict.usc.edu
3Univelrsity of Crete, Computer Science Department, Voutes Campus,70013, Heraklion, Greece
papagian@csd.uoc.gr

Figure 1: Mobile, AR, life-size gamified virtual characters powered through a fast, automatic animation pipeline with procedural body

animation, speech and lip-sync.

Abstract

In this work we present a complete methodology for robust author-
ing of AR virtual characters powered from a versatile character an-
imation framework (Smartbody), using only mobile devices. We
can author, fully augment with life-size, animated, geometrically
accurately registered virtual characters into any open space in less
than 1 minute with only modern smartphones or tablets and then
automatically revive this augmentation for subsequent activations
from the same spot, in under a few seconds. Also, we handle ef-
ficiently scene authoring rotations of the AR objects using Geo-
metric Algebra rotors in order to extract higher quality visual re-
sults. Moreover, we have implemented a mobile version of the
global illumination for real-time Precomputed Radiance Transfer
algorithm for diffuse shadowed characters in real-time, using High
Dynamic Range (HDR) environment maps integrated in our open-
source OpenGL Geometric Application (glGA) framework. Effec-
tive character interaction plays fundamental role in attaining high
level of believability and makes the AR application more attractive
and immersive based on the SmartBody framework.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must be honored. For all
other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

SA’15 Symposium on MGIA, November 02 — 06, 2015, Kobe, Japan.

ACM 978-1-4503-3928-5/15/11.

http://dx.doi.org/10.1145/2818427.2818463

CR Categories: [Computer Graphics]: Graphics systems and in-
terfaces - Mixed / augmented reality

Keywords: Augmented Reality, Rendering, Animation, Geomet-
ric Algebra, Illumination, mobile precomputed radiance transfer,
procedural character animation systems

1 Introduction

Augmented Reality describes the technology that focuses on aug-
menting with computer virtual elements real environments using
computer graphics and vision-based tracking and registration al-
gorithms. Recently its popularity has increased due to the peace
dividend from the mobile-devices competition wars.

In this work we present a novel pipeline for robust authoring in
under 1 minute of Geometric and Photometric AR scenes consist-
ing of animated virtual characters in a fast and robust manner. We
use the glGA framework [Papagiannakis et al. 2014; Papagian-
nakis et al. 2015], a shader based C++ Computer Graphics (CG)
framework integrated with a character animation platform, Smart-
Body [Shapiro 2011; Feng et al. 2014]. We have implemented
the Precomputed Radiance Transfer (PRT) global illumination for
real-time algorithm, running purely on mobile devices, for render-
ing diffuse unshadowed and shadowed virtual characters, integrated
in our glGA framework. We present a marker-less AR authoring
in indoors as well as in outdoors environments using only mobile

devices. Furthermore we complement our AR pipeline so that hu-
manoid 3D models can be incorporated within seconds using the
versatile SmartBody animation system that is infused with a wide
range of capabilities, such as locomotion, object manipulation, gaz-
ing, speech synthesis and lip syncing. Finally we describe all the
necessary steps so that any computer graphics framework can be
easily integrated with SmartBody, in order to harness its advanced
character behavioral capabilities.

In this work, for the first time, since all our previous virtual humans
in AR [Papagiannakis et al. 2004; Egges et al. 2007] and in [Arnold
et al. 2008; Jung and et al.] were based in offline created body
and face animations that were played back in real-time, we have
interactive virtual humans in AR via procedurally generated body
and facial animation.

2 Previous Work

[Papagiannakis et al. 2004] successfully demonstrated a complete
methodology for real-time mobile mixed reality systems with vir-
tual character augmentations. The work featured realistic simula-
tions of animated virtual human actors (clothes, body, skin, face)
who augmented real environments (the archaeological site of an-
cient Pompeii) and re-enacted staged storytelling dramas. Although
initially targeted at Cultural Heritage Sites, the paradigm was not
limited to such subjects. However, portability, usability and form
factor was a major impediment for wider adoption of that suite of
technologies and algorithms.

Modern AR systems have been progressing since then [Papagian-
nakis et al. 2014; Arnold et al. 2008; Vacchetti et al. 2004; Egges
et al. 2007; Gun and Billinghurst 2013] and already component-
based frameworks have been researched for mobile outdoor appli-
cations [Papagiannakis et al. 2015; Huang et al. 2013].

[Langlotz et al. 2012] presents a novel system that allows in-place
3D content creation for mobile Augmented Reality in unprepared
environments. The work described two different tracking tech-
niques in order to create a feature database of the environment while
the user runs the AR application. One tracking technique is for
large working environments and the other for small workspaces. If
the feature database exists, the user can retrieve it from the server
with a query. [Gandy and MaclIntyre 2014] presents the results of a
user test of an AR toolkit, the DART system.

The SmartBody animation framework described in [Feng et al.
2014], provides a pipeline for incorporating high-quality humanoid
assets into a virtual character and quickly infuse that character with
a broad set of behaviors that are common to many games and simu-
lations, including lip syncing [Xu et al. 2013] and nonverbal behav-
ior [Marsella et al. 2013]. In this work we provide a novel integra-
tion of their framework for mobile AR scenes, featuring life-size,
interactive virtual characters and a marker-less SLAM-based cam-
era tracking system that allows the augmentation of any indoors or
outdoors scene, in under one minute.

Finally, much previous work has been for Global Illumination us-
ing Precomputed Radiance Transfer Techniques (PRT) [Sloan et al.
2002; Nowrouzezahrai et al. 2011]. PRT is a real-time rendering
method, which can be used for rendering diffuse and glossy not con-
formable objects in low frequency environments, with soft shadows
and intereflections. For unshadowed diffuse illumination we used
the method described in [Sloan et al. 2002]. This method is divided
into two steps: a preprocess step and run time step. As a preprocess
step functions are created over the object’s surface that represent
incident light into transferred radiance on each vertex of the object.
At run time, these functions are applied to the incident light that

comes from an environment map. Lighting and transfer functions
are represented using low-order spherical harmonics.

3 Mobile AR Architecture based on gIGA and
SmartBody

The main framework used for our AR application is the open source
OpenGL Geometric Application (glGA) framework. gIGA is a
lightweight, shader based C++ Computer Graphics (CG) frame-
work which is developed for educational as well as research pur-
poses. glGA is a cross platform application development frame-
work and supports many mobile and desktop platforms. glGA con-
tains many operations like compiling and loading shaders, textures,
sounds, animations, loading 3D static meshes as well as rig meshes.

glGA supports from simple 3D models up to animated, skinned
charcaters. In order to help the students visualize the externally
rigged virtual characters (e.g. Collada or MD5 models) glGA pro-
vides the functionality required to parse the bone tree in real-time
and retrieve the transformation matrix from each one of the joints.
These matrices are then passed as uniform and vertex attribute pa-
rameters to the vertex shader. In the Table 1 and Figure 2 we pro-
vide the clear and concise overview of the glGA external dependen-
cies. Seven well-known, well-documented and actively supported
open-source libraries are utilized under the hood of glGA. The basic
glGA application contains in a single file, only the main(), init() and
display() C++ methods for maximum efficiency and readability.

Table 1: gIGA Open-source, external s/w libraries.

GLFW Window creation and OpenGL context han-
dling

GLEW OpenGL extension loading library

GLM Template-based, C++ mathematics library
similar to GLSL built-in math functions and
types

GUI toolkit for widget creation and
real-time shader/scene parameter handling
based on user input

Multi-format Image/Texture loading
Loading of static or skinned models
Character animation platform that provides
locomotion, steering, object manipulation,
lip syncing, gazing, physics, nonverbal be-
havior and other types of character move-
ment in real time

Geometric Algebra operations

open source library that supports many pop-
ular image formats like BMP, PNG, JPEG,
TIFF as well as HDR and also provides
tonemapping algorithms for HDR images.
Boost set of libraries written in C++ that provides
support for many functionalities like spher-
ical harmonics, linear algebra, pseudoran-
dom number generation, image processing,
multithreading and regular expressions

AntTweakBar

Image Magick
Assimp
SmartBody

GA Sandbox
Free Image

We have developed glGA in such a way so that all of its examples
and sample assignments can run in any of the standard desktop and
mobile platforms: Windows, Linux, OSX and iOS. In order for all
of those (10 in total) applications to be supported, we had to cre-
ate a short Platform-Wrapper component that handles the platform
specific functionality.

In addition to the desktop platforms of Windows, Linux and OSX,
the glGA examples are also supported in the mobile iOS platform.

[Textures] [shgggg?mmm] [3D Models]
/T seaoe B

Utilities

gIGAHelper Application
gIGARigMesh

glGAMesh

M
Tl

ImageMagick
PlatformWrapper

GA Sandbox

Free Image \

0

[WIndows][Mac][Linux][105]

Figure 2: The glGA overall framework s/w architecture.

Here is where the PlatformWrapper is also employed not only due
to the header files but also due to the different OpenGLES methods
and calls (instead of standard OpenGL). An additional difference
between desktop and mobile platforms is the way that external as-
sets (e.g. textures, 3D models etc.) are loaded by the application.
E.g. i0S uses bundles, while Windows, Linux and Mac retrieve the
assets directly from the disk with either relative or absolute paths.
Other than these, the current time retrieval is also different from
desktop to mobile. E.g. it is essential during character animation,
where we have to recalculate the matrix transformations based on
the time passed since the animation started. As we have already,
mentioned the code of the examples and assignments is in portable,
standard C++, thus a standard C++ compiler (e.g. gcc, LLVM, Intel
or Microsoft) is mandatory to be em-ployed. In glGA, we have also
included some IDE project files for certain platforms already set up
and ready to be built and executed. The project files that exist in
glGA are for Visual Studio 2010 for Windows and Xcode 5.0.2 for
Mac and iOS, while we also provide the basic gcc/g++ makefiles
for Linux. The only modification required is to define the specific
platform on top of the PlatformWrapper header file. Of course,
other IDEs can also be used as long as they support standard C++.
glGA can be accessed freely here: nttp://george.papagiannakis.
org/?page_1id=513.

Furthermore in glGA framework is integrated the Metaio SDK [Pa-
pagiannakis et al. 2014] framework. This framework is responsi-
ble for the AR functionalities and can perform markerless SLAM-
based 3D camera tracking. The user can utilize the capabilities of
the Metaio SDK in two ways. The user must create a 3Dmap us-
ing the Toolbox mobile application, and then pass this file to the
application bundle using a Desktop File transfer application. Alter-
natively, he can create a 3D map at runtime. However, creating the
3D map with the second way has a limitation: you cannot extend
the 3D map. In our work, we propose a way to load the 3D map
created by Toolbox, directly from the device.

In our application the user must create the 3D map using the Tool-
box mobile application, send it via e-mail, open the e-mail, select
the file and open it via our application. In this way, we can have an
extended 3D map directly in our application.

We achieve this by modifying the property list in the .plist file.
The user must define the file type extension that the application
will support (Uniform Type Identifier (UTL)) by setting to the

public.filename-extension3dmap. Also, we add the identifier for the
custom UTL.When the user opens the .3dmap with the application
the function: -(BOOL) application:(UlApplication *) application
openURL:(NSURL *) urlsource Application:(NSString *) source
Application annotation:(id)annotation in AppDelegate is called au-
tomatically. By using the variable url we extract the full path of the
3Dmap and set is as the metaioSDK configuration file.

The glGA framework in iOS platform initially supported render-
ing only for characters that consist of a single mesh, however, hu-
manoids with clothes consist of multiple meshes. To achieve this
we render each submesh of the character separately by creating a
set of Vertex Attribute and Vertex Buffer Objects for each one of
them. The desktop glGA used glDrawElementsBasevertex() func-
tion which is not supported in OpenGLES and we thus replaced it
with glDrawArrays().

4 AR scene authoring with Geometric Alge-
bra

We handle rotations of the AR scene objects with the use of Geo-
metric Algebra (GA) by replacing euler angles with euclidean GA
rotors. With the use of GA we produce more efficient results in
terms of visual quality. GA rotors are simpler to manipulate than
euler angles, more numerically stable and more efficient than rota-
tion matrices. Moreover, GA rotors don’t produce discontinuities
to the rotation, by avoiding the problem of Gimbal Lock.

4.1 Review of the Euclidean Geometric Algebra model

GA [Dorst et al. 2010; Hestens and Sobczyk 1984] is a mathemat-
ical framework that provides a convenient mathematical notation
for representing orientations and rotations of objects in three di-
mensions, a compact and geometrically intuitive formulation of al-
gorithms, and an easy and immediate computation of rotors.

The basis vectors for the 3-dimensional Euclidean geometric alge-
bra space are the orthonormal basis e1, e2 and es which are the
basis elements for generating the GA. The products of GA is the
scalar product, the outer product, the inner product and the geo-
metric product. The outer product, often called wedge product is
denoted by A and has the properties of associativity, linearity and
anti-symmetry, where a, b and ¢ are GA vectors.

Linearity : ¢ A (a+b) = (cAa)+ (cADb)
Associativity : ¢ A (aAb) =(cAa)A\b
Anti — symmetry :aAb=—-bAa

The dot product is computed using the Equation 1.

aNb=(aie1 + azez + azes) A +(bier + baea + bzes) (1)

You can construct a higher level dimmensionality oriented subspace
by defining the product between GA vectors. Such a subspace is
called blade and a k-blade denotes a k-dimmensional subspace. For
example, a vector is 1-blade, the outer product of 2 vectors is 2-
blade, called bivector, the outer product of 3 vectors is 3-blade,
called trivector etc. A bivector represents a plane and a trivector
represents a 3D volume. The bivectors of the 3D euclidean GA
are e1 A es, es A e3, ez A e1 and the trivector e; A e2 A e3. The
highest blade element is called pseudoscalar and is denoted by 1.
For example the pseudoscalar in 3D eucledian space is /3.

The inner product, often called dot product is denoted by - and is
used to compute distance and angles. The properties of the inner
product is symmetry and linearity:

http://george.papagiannakis.org/?page_id=513
http://george.papagiannakis.org/?page_id=513

Symmetry :a-b=>5b-a
Linearity : (ua+ vb) -c=wu(a-c)+v(b-c)

The inner product is computed using the Equation 2.

a-b = |a||blcosd 2)

where ¢
is the angle formed by the vectors a and b.

The geometric product between the vectors a and b (ab) equals to
a-b+4 a A b. The geometric product is a mixed grade product: it
consists of a scalar which is 0-blade and a bivector which is 2-blade,
and is called multivector. The geometric product is computed using
the Equation 3.

ab=a-b+aAb=|a|b|(cosp + Ising = |a||ble’® (3)

The duality of a GA element is denoted by *. The duality gives us a
blade that represents the orthogonal complement of that subspase.
For example, the duality of a bivector equals to the vector that is
perpendicular to this bivector and vice versa. The duality is defined
with the Equation 4.

A= AT = —AI @)

For example the duality of the basis vector in the 3D space is com-
puted as follows:

6; = exl3 = —62(61 N eax N\ 63) = €2€1€2€3 = —E2€2€1€3 =
—e1e3 = —e1 N es3

The basic element used to handle rotations of any multivector in
GA is rotor and is usually denoted as R. To rotate a multivector A
we sandwiching it between the rotor R and its inverse rotor R™* .
As a result the rotated multivector is given by RAR™.

4.2 Algorithm description

Our main novelty lies in the replacement of euler angles with fast
and robust GA rotors while the user rotates the objects of the AR
scene.

As a first step we set the initial rotation of the scene on each axis
and we compute the current GA rotor. We convert euler angles to
quaternion representation and we compute angle and axis of the
quaternion in order to compute the current GA rotor. To compute
the rotor we use the following exponential 5.

R=e '3)

where ¢ is the target angle of rotation and u is the axis of rotation.
The code that computes the initial rotor of the AR scene is shown
on Table 2.

Table 2: Quaternion to GA rotor representation.

quat destQ;

float angleDest = angle(destQ);

vec3 axisDest = axis(destQ);

mv v=unit_e(axisDest.x*el+axisDest.y*e2+axisDest.z*e3);
rotor res =_rotor(exp(radians(angleDest)/2 * (-I3 * v)));

Our implementation gives the ability to the user to rotate the scene
on global axis or on local axis. When we rotate on local axis we
rotate the GA basis vectors with the current GA rotor in order to
define the new local coordinate system. We rotate the basis vec-
tors using the Equation ...The new rotated vectors rot_ei, rot_ea,
rot_es are used to define the new planes of rotation which are
rot_e1 A rot_ez, rot_es N rot_es and rot..3 A rot_e; on x, y,
z axis respectively. In contrast, when we rotate in global axis the
planes of rotation are e1 A ez, e2 A e3 and e3 A e; which extracted
using the GA basis vectors. We use the Equation 6 to rotate the
scene on an axis.

R=e¢ " (©6)
where v is the plane of rotation.

5 Real time global illumination using PRT
methods

One important part of the AR application is the global illumination,
in order to produce more realistic results. The AR 3D objects must
be illuminated base on the light of the real environment of the cur-
rent scene that are located. To achieve this we use Precomputed Ra-
diance Transfer (PRT) techniques. We integrated this functionality
in the glGA framework. Our work so far includes diffuse unshad-
owed and shadowed PRT for static objects.

In our application the user has the ability to adjust the exposure in
order to change the intensity of the light of the objects base on the
light of the current scene. We give this functionality to the user be-
cause base on the time that is tracking, the light may have different
intensity in comparison to the intensity captured in the environment
map.

5.1 Shadowed-Transfer and Unshadowed-Transfer
PRT implementation for mobile devices

The first step is to generate random samples using the Monte Carlo
Integration. We divide the sphere’s surface in RxR cells where
R = /s and s is the number of samples. To generate the sam-
ples we generate a random point in every cell. Then, we convert
the points to vector coordinates and we compute the spherical har-
monics coefficients for each sample. For the Spherical Harmonics
implementation we used the Boost library.

The second step (precomputed) is to compute the coefficients that
represent the incident radiance coming from the environment map
for each vertex. We sum up for each sample, for each SH coef-
ficient the multiplication of dot product of the vertex normal and
the direction of the sample and the spherical harmonic value. The
dot product gives positive value if the ray is inside the upper hemi-
sphere. Then, we divide the result with the number of samples. For
the shadowed- transfer PRT we multiply the dot product with the
visibility term (1 if the vertex is visible otherwise 0). The Formula
7 is used for shadowed-transfer PRT, where p,, is the albedo at ver-
tex X, L; (x, w;) is the incoming light to vertex x from direction w;,
V (w;) is the visibility term from direction w; and N - w; is the dot
product between vertex normal and direction w;.

L(z) = ”f /ﬂ Li(z,wi)V (wi)maz(Ny - wi, 0)dw; (7

We implement shadows by constructing Binary space partitioning
(BSP) tree. BSP tree subdivide hierarchically a space into irregu-
larly sized subspaces. Particularly, we use kd-trees. Constructing

and traversing the BSP trees and especially kd-trees is more effi-
cient compared with other methods.

As a first step the kd-tree starts with a bounding box that contains
all the primitives (triangles) of the scene. If the number of primi-
tives in a bounding box (parent node) is greater than a predefined
threshold then the particular bounding box is spitted into two dif-
ferent bounding boxes (child nodes). We split the bounding box
along one of the coordinate axes (splitting is align with one of the
axes). Triangles are associated with the bounding box in which are
included in, and triangles that overlap two bounding boxes are as-
sociated with both of them. Each node of tree has a split axis and
position and pointers to its two children.

Since we construct the kd-tree we are able to define if a vertex is
illuminated or not from a certain direction by ray casting. We de-
termine if the ray intersects any other triangle by traversing the kd-
tree. We generate a ray form the vertex with direction towards the
light. If the ray intersects any other triangle implies that the vertex
is not illuminated from the particular direction.

At runtime, we compute the light coefficients base on the input en-
vironment map. Our environment maps are of HDR file format.
We applied tonemapping to the environment map using the Free
Image library. Firstly, we compute the light coming from the en-
vironment map for every generated sample by converting Cartesian
coordinates of the sphere to image coordinates. Each light coeffi-
cient equals to the summation of the multiplication of light coming
from the sample direction with the SH coefficient. We multiply the
result with the probability 4 * PI and divide it with the number of
samples.

The final color of each vertex equals to the summation of multi-
plication of the light coefficients with the vertex coefficients. The
Fragment shader used for rendering PRT illumination is shown on
Table 3.

Table 3: Fragment shader for PRT illumunation.

precision highp float ;

// texture of the character

uniform sampler2D texSampler;

/l texture coordinate

varying vec2 fTexCoord;

/I color of the vertex coming from environment map

varying vec3 fColor;

uniform float fExposure;

void main(){
vec3 color = texture2D(texSampler , fTexCoord).rgb

* fColor * fExposure;

gl_FragColor = vec4(color , 1.0);

5.2 Obtaining HDR Image Based Light Probes

The method that we use to obtain HDR light probes is capturing
many HDR images from different viewing angles from a mirrored
sphere. Then we crop the images using Photoshop (Elliptical Mar-
quee Tool, select the area of the probe) and then loading the images
in HDRshop. We convert the probe images to Latitude/Longitude
format (Image-Panorama-Panoramic Transformations- Panoramic
Transformations, destination image format: Latitude/Longitude)
and we apply the analogue rotation (3D Rotation - Arbitrary Ro-
tation - Settings) so that the images to be consistent. Then, we save
the images in .hdr format, loading them in Photoshop and fix the er-
rors of the most qualitative image using parts from the other angle
images (i.e. we replace the part of the image that exists reflection by

the tripod or the camera). Finally, we convert the new image back
to mirrored ball format, using HDRshop. Our captured images and
the generated final one is shown of Figure 3.

Figure 3: The captured HDR mirror ball images (left) and the gen-
erated final one (right)

Figure 4: The initial character (right), unshadowed PRT (middle)
and shadowed PRT (right) base the final generated probe on Figure
3.

6 Integration of SmartBody to any modern
shader-based CG framework

We integrated SmartBody with glGA in order to be able to have a
wide range of behaviors in our characters and be able to use an ani-
mation designed for a certain character to another one (retargeting).

The main idea is to create a character in SmartBody with a de-
formable mesh instance, assign him/her an animation, take the
transformation matrix on the current frame, of each bone of the
character and pass it to the corresponding skeleton data structure
in glGA. In this way, Smartbody can be integrated to any com-
puter graphics framework in order to utilize their character anima-
tion generators.

We followed the following suggested SmartBody integration tech-
nique [Shapiro 2011; Feng et al. 2014]:

1. Inyour engine/simulation, create a character. Simultaneously,
create a SmartBody character in the SmartBody context with
the same name.

2. Implement the SBSceneListener interface which handles
character creation/deletion and modification of SmartBody
characters, and perform the equivalent actions in your en-
gine/simulation.

3. Send SmartBody commands to control the character and
change the scene every frame as needed.

4. Query SmartBody every frame to obtain the character state,
and change the engine/simulation character’s state to match it

Character behaviors such as speaking, gesturing, or other animated
performance can be controlled by sending explicit commands using
the Behavioral Markup Language (BML) [Kopp et al. 2006].

Firstly, we start the SimulationManager and we update it on ev-
ery frame. We create a Character and a DeformableMesh (Smart-
Body classes) and we assign the second to the DeformableMeshIn-
stance of the character. The next step is to create a Pawn, assign
the skeleton of the character to that and assign the Pawn to the De-
formableMeshlInstance of the character. Also, we have to set the
visibility of the DeformableMeshInstance of the character to true
in order to Smartbody be able to update the transformation of the
character. Then we run execBML function of the BMLProcessor
in order to assign an animation to the character. On every frame
we use the UpdateFast function of the DeformableMesh, we get
the Joint names and Joint ids and we correlate them with the corre-
sponding bones in glGA. Finally, we get the transformation matrix
of each bone from the transform buffer of Smartbody and we assign
them in the bones in glGA.

7 Results

In this section, we present our visual results of the AR applications
in indoors as well as in outdoor environments.

On Figure 5 is shown the process of authoring the Geometric and
Photometric AR scene in less than one minute. Firstly, we create
a 3D map of the scene using Toolbox, and then we send it via e-
mail and open it using our application. Next, we manage the size
position and rotate of the character to achieve a life-sized augmen-
tation and then we manage the shading of the object by adjust the
exposure in order to be consistent with the scene. Finally, we save
the transformations in order to have the same transformation when
re-launching the app.

Figure 5: Process of Geometric and Photometric AR scene author-
ing under one minute in outdoors (top) as well as indoors (bottom)
environments.

8 Conclusions and Future Work

In this work we proposed a method for robust authoring of Geomet-
ric and Photometric AR scenes in less than a minute. We handle
rotations of the AR objects using GA rotors and we achieve higher
quality resutls by avoiding the problem of Gimbal Lock. Moreover,
we implemented a global illumination algorithm for unshadowed as
well shadowed diffuse static objects using Precomputed Radiance
Transfer methods, which we have integrated it in glGA framework.
We have also shown the results of our AR app in indoors and in
outdoor environments. Furthermore, we have integrated a character
animation platform, SmartBody, with the glGA framework. Such
integration will allow complex interactions with virtual characters
through AR.

Our main focus is to expand and improve the robust, easy and fast
AR authoring of 3D scenes involving both static as well as ani-
mated virtual characters, lit with natural scene HDR Image Based
Light. In the future, we aim to give the ability to the user to inter-
act with the virtual characters. Moreover, in the future, we could
explore the other sensors (such as the heart rate, light, temperature
sensors) in order to better connect the real-world with the virtual-
world. We could also exploit data from the microphones, cameras
or GPS. Lastly, an interesting thought would be creating a network
of multiple secondary devices, providing and combining data from
them.

Acknowledgements

The research leading to these results has received funding from the
European Union People Programme (FP7-PEOPLE-2013-ITN) un-
der grant agreement n° 608013

References

ARNOLD, D., DAY, A., AND J. GLAUERT, E. A. 2008. Tools for
populating cultural heritage environments with interactive vir-
tual humans. EPOCH Conference on Open Digital Cultural Her-
itage Systems, 1-7.

DORST, L., FONTUNE, D., AND MANN, S. 2010. Geometric
Algebra for Computer Science. Morgan Kaufmann.

EGGES, A., PAPAGIANNAKIS, G., AND MAGNENAT-
THALMANN, N. 2007. Presence and interaction in mixed
reality environments. Visual Computer 23, 5, 317-333.

FENG, A., HUANG, Y., XU, Y., AND SHAPIRO, A. 2014. Fast,
automatic character animation pipelines. Computer Animation
and Virtual Worlds 25, 1 (Jan.), 3—-16.

GANDY, M., AND MACINTYRE, B. 2014. Designers augmented
reality toolkit, ten years later: Implications for new media au-
thoring tools. UIST, 627-636.

GREEN, R. 2003. Spherical harmonic lighting: The gritty details.
Game Developers’ Conference.

GUN, A. L., AND BILLINGHURST, M. 2013. A component based
framework for mobile outdoor ar applications. In SIGGRAPH
Asia 2013 Symposium on Mobile Graphics and Interactive Ap-
plications (SA °13), 173-179.

HESTENS, D., AND SOBCzYK, G. 1984. Clifford Algebra to
Geometric Calculus: A Unified Language for Mathematics and
Physics. Reidel Dordrecht.

HUANG, Z., Hul, P., PEYLO, C., AND D.CHATZOPOULOS. 2013.
Mobile augmented reality survey: A bottom-up approach.

JUNG, Y., AND ET AL., A. K. D. F. Believable virtual characters
in human-computer dialogs. Eurographics 2011 - State of The
Art Report, 75-100.

KANBARA, M., AND YOKOYA, N. 2002. Geometric and photo-
metric registration for real-time augmented reality. In Proceed-
ings of ISMAR2002, 15-22.

KoPp, S., KRENN, B., MARSELLA, S., MARSHALL, A. N.,
PELACHAUD, C., PIRKER, H., THORISSON, K. R., AND
VILHJALMSSON, H. 2006. Towards a common framework for
multimodal generation: The behavior markup language. In In-
telligent virtual agents, Springer, 205-217.

LANGLOTZ, T., MOOSLECHNER, S., ZOLLMANN, S., REIT-
MAYR, C. D. G., AND SCHMALSTIEG, D. 2012. Sketching
up the world: in situ authoring for mobile augmented reality.
Personal and Ubiquitous Computing 16, 6, 623—630.

MARSELLA, S., XU, Y., LHOMMET, M., FENG, A., SCHERER,
S., AND SHAPIRO, A. 2013. Virtual character performance
from speech. In Proceedings of the 12th ACM SIGGRAPH/Eu-
rographics Symposium on Computer Animation, ACM, 25-35.

NOWROUZEZAHRAI, D., GEIGER, S., MITCHELL, K., SUMNER,
R., JAROSZ, W., AND GROSS, M. 2011. Light factorization
for mixed-frequency shadows in augmented reality. Computer
Animation and Virtual Worlds, 173-179.

PAPAGIANNAKIS, G., SCHERTENLEIB, S., PONDER, M.,
AREVALO, M., MAGNENAT-THALMANN, N., AND THAL-
MANN, D. 2004. Real-time virtual humans in ar sites. /st Euro-
pean Conference on Visual Media Production CVMP, 273-276.

PAPAGIANNAKIS, G., PAPANIKOLAOU, P., GREASIDOU, E., AND
TRAHANIAS, P. 2014. glga: an opengl geometric application
framework for a modern, shader-based computer graphics cur-
riculum. Eurographics 2014, 1-8.

PAPAGIANNAKIS, G., GREASIDOU, E., P.TRAHANIAS, AND
TsiouMAs, M. 2015. Mixed-reality geometric algebra ani-
mation methods for gamified intangible heritage. International
Journal of Heritage in the Digital 3, 683—699.

SHAPIRO, A. 2011. Building a character animation system.

SLOAN, P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radi-
ance transfer for real-time rendering in dynamic, low-frequency
lighting environments. In Proceedings of ACM SIGGRAPH.

SLOAN, P. 2008. Stupid spherical harmonics(sh) tricks. GDC
2008, 1-42.

VACCHETTI, L., LEPETIT, V., PONDER, M., PAPAGIANNAKIS,
G., Fua, P., THALMANN, D., AND THALMANN, N. M. 2004.
Stable real-time ar framework for training and planning in in-
dustrial environments. Virtual Reality and Augmented Reality
Applications in Manufacturing, Ong, S. K., Nee, A.Y.C. (eds),
ISBN: 1-85233-796-4, Springer-Verlag, 125-142.

XU, Y., FENG, A. W., MARSELLA, S., AND SHAPIRO, A. 2013.
A practical and configurable lip sync method for games. In Pro-
ceedings of Motion on Games, ACM, 131-140.

APPENDIX A: Smart Body

SmartBody Invocation and calls

void createRetargetInstance (string srcSkelName,
string tgtSkelName){
vector<string> endJoints=getEndJoints ();

}

vector<string> relativeJoints=getRelativelJoints ();

SBRetargetManager* retargetManager;

retargetManager = m_pScene—>getRetargetManager ();

SBRetarget* retarget;

retarget = retargetManager—>getRetarget (srcSkelName ,
tgtSkelName)

retarget = retargetManager—>createRetarget (srcSkelName ,

tgtSkelName);
retarget —>initRetarget(endJoints , relativeJoints);

void initializeSmartBody (){

// set SB variables

m_pScene = SBScene:: getScene ();

assetManager = m_pScene—>getAssetManager ();
sim = m_pScene—>getSimulationManager ();
mediapath = PlatformWrapper :: getMediapath ();
m_pScene—>setMediaPath (mediapath);

/! load assets from mediapath
m_pScene—>loadAssetsFromPath (mediapath);

// create jointmap for glGA character

SBJointMap* RachelMap = new SBlointMap ();

SBJointMapManager* jointMapManager;

jointMapManager = m_pScene—>getJointMapManager ();

RachelMap = jointMapManager—>createJointMap (mediapath

+ skeletonName);

RachelMap—>applySkeleton (m_pScene—>getSkeleton (

skeletonName));

string RachelName = ”Rachel”;

// apply glGA mesh and skeleton to SB character

SBCharacterx Rachel;

Rachel = m_pScene—>createCharacter (RachelName ,” Rachel ”);

Rachel—setSkeleton (m_pScene—>createSkeleton (skeletonName));

Rachel—createStandardControllers ();

Rachel—>setDoubleAttribute (" deformableMeshScale” ,1);

Rachel—setStringAttribute (" deformableMesh”,” Rachel ”);

string dMeshAttrib ;

dMeshAttrib = Rachel—=getStringAttribute (" deformableMesh”);

Rachel—>setStringAttribute (" deformableMesh”,”dMeshAttrib”);

Rachel—>dMeshInstance_p = new DeformableMeshInstance ();

Rachel—>dMeshlInstance_p—>setDeformableMesh (

assetManager—>getDeformableMesh (meshName)) ;

Rachel—>dMeshlInstance_p—>setPawn (Rachel);

// mapping glGA character joints — motion

auto_map (RachelMap);

SBJointMap *zebra2Map=m_pScene—>getJointMapManager ()
—>createJointMap (” zebra2”);

// mapping SB character joints — motion

zebra2_map (zebra2Map);

// create SB skeleton

SBSkeleton* bradSkeleton=m_pScene—>skeletonSB (skeletonSB);

zebra2Map—>applySkeleton (bradSkeleton);

SBMotion *motion = m_pScene—>getMotion (” ChrMarine@Walk01”);

motion—>setMotionSkeletonName (skeletonSB);

zebra2Map—>applyMotion (motion);

SBSkeleton skelName = m_pScene—>getCharacter (RachelName)

—>getSkeleton ();

// retarget a motion that is created

// for SB skeleton to glGA skeleton

createRetargetInstance (skeletonSB , skelName . getName ());

// start simulation manager

sim—>start ();

sim—>setupTimer ();

// Rachel executes ChrMarine@Walk0l animation

m_pScene—>getBmlProcessor()—>execBML(” Rachel”,

"<body posture=\"ChrMarine@Walk01\”/>");

void updateSB (){

// update SB animations
m_pScene—>update ();
sim—>updateTimer ();

updateJoints ();

SmartBody to gIGA conversion for every frame

void updateJoints (){
/!l update joints of SB character
char—>dMeshlnstance_p—>updateTransformBuffer ();
vector<string > names=char—>dMeshlInstance_p
—>getJointNames ();
map<string ,int> ids=char—>dMeshInstance_p
—>getJointlds ();

/! foreach joint
for (int i=0; i<names.size (); i++){
if (boneMapping. find (names[i]) != boneMapping.end()){
// index of joint to gIGA
int index = boneMapping[names[i]];
// get transformation matrix of the joint
SrMat sb_mat_tmp=char—>dMeshlInstance_p
—>transformBuffer.at(ids[names[i]]);

mat4 matdtmp = mat4(
sb_mat_tmp.ell(),sb_mat_tmp.el2(),
sb_mat_tmp.el3(),sb_mat_tmp.eld(),
sb_mat_tmp.e2l(),sb_mat_tmp.e22(),
sb_mat_tmp.e23(),sb_mat_tmp.e24(),
sb_mat_tmp.e31(),sb_mat_tmp.e32(),
sb_mat_tmp.e33(),sb_mat_tmp.e34(),
sb_mat_tmp.e4l(),sb_mat_tmp.ed42(),
sb_mat_tmp.e43(),sb_mat_tmp.ed44 ());
bonelnfo[index]. finalTransformation = mat4tmp;

APPENDIX B: PRT
Random Sampling - set SH coefficients

int samples, bands;
vector <SHSample> samplesCoefficients;
int numCoeff=bands*bands;
vector<SHSample> setCoefficients (){
int sqrtSamples = std::sqrt(samples);
for (int i=0; i<sqrtSamples; i++){
for (int j=0; j<sqrtSamples; j++)

{
// generate random samples on the sphere
double x=(i+(double)rand ()/RANDMAX)/sqrtSamples;
double y = (j+(double)rand ()/RANDMAX)/sqrtSamples;
double theta = 2.0fxacos(sqrt(1.0f—x));
double phi=2.0f*M_Plxy;
SHSample cur;
cur.sphereCoord=vector3 (theta ,phi,1.0) ;
cur.vectorCoord=vector3 (sin(theta)*cos(phi),
sin(theta)xsin(phi),
cos(theta));
cur.coeff = new double[bandsxbands];
//set SH coefficients for every sample
for(int 1=0; I<bands; 1++){
for(int m=—1; m<=l; m++){
int index=1x*(l+1)+m;
complex<double> SH;
SH= spherical_harmonic(l, m, theta, phi);
cur.coeff[index]=SH.real ();
}
}
samplesCoefficients.push_back(cur);
}

}

return samplesCoefficients;

Compute Light Coefficients

vec3* setLightCoeffs (){
vec3x lightCoeffs;
lightCoeffs=new vec3[numCoeff];
for(int i = 0; i < numCoeff; i++){
lightCoeffs[i]=vec3(0.0,0.0,0.0);
for(int j=0; j < samples; j++){
//incoming color on enviroment map from sample dir
vec3 light=this—>getLight(samplesCoefficients[j]);
double curC=samplesCoefficients.at(j).coeff[i];
lightCoeffs[i]+=vec3 (light[0] * curC,
light[1] % curC,light[2]% curC);
}
// devide by num of samples
lightCoeffs[i]*=(4.0f«M_PI/samples);
}

return lightCoeffs;

Compute Vertex Coefficients

void vertCoefficients (){
vertCoeff = new double[perVertData.size () %= numCoeff];
int numSamples = (samplesCoefficients).size ();
// for each vertex
for (unsigned int i = 0; i < perVertData.size ();
double curVertCoeff[numCoeff];
/! for each sample
for (int j=0; j< numSamples; j++){
// dot product of normal and sample direction
// kdtree to compute visibility of vertex
double brightness;
brightness = computeBrightness (
perVertData[i].normal
perVertData[i]. position ,
samplesCoefficients[j],kdTree);
if (brightness > 0.0)
//add brightness*SH foreach sample,
// for each coefficient
for(int m=0; m<numCoeff; m++){
double val = (brightnessx*
samplesCoefficients.at(j).coeff[m]);
curVertCoeff[m]+=val;}

i++){

}

double factor = 4.0f*M_PI / numSamples;
for(int j=0; j<numCoeff; j++){
curVertCoeff[j] = curVertCoeff[j] * factor;
vertCoeff[ixnumCoeff+j] = curVertCoeff[]j];
}
}

// write to file coefficients for each vertex
writeToFile ();

Compute color for each vertex

void computeColors (){
// foreach vertex
for (int i=0; i<data.size (); i++){
vec3 curColor(0.0,0.0,0.0);
for (int j=0; j<numCoeff; j++){
vec3 b = lightCoeffs[j];
double a = vertCoeff[i*numCoeff + j];
// color=light coeff % vertex coeff
vec3 color = vec3(b[0]*a,b[l]*xa, b[2]*a);
// add colors foreach coefficient
curColor += color;
}
vec3 finalColor(curColor[0]/M_PI,
curColor [1]/M_PI,curColor[2]/M_PI);
data[i].color = finalColor;

i

