
A Conformal Geometric Algebra code
generator comparison for Virtual Character
Simulation in Mixed Reality

Margarita Papaefthymiou, Dietmar Hildenbrand and George
Papagiannakis

Abstract. Over the last few years, recent advances in user interface and
mobile computing, introduce the ability to create new experiences that
enhance the way we acquire, interact and display information within the
world that surrounds us with virtual characters. Virtual Reality (VR) is
a 3D computer simulated environment that gives to user the experience
of being physically present in real or computer-generated worlds; on the
other hand, Augmented Reality (AR) is a live direct or indirect view of a
physical environment whose elements are augmented (or supplemented)
by computer-generated sensory inputs. Both technologies use interactive
devices to achieve the optimum adaptation of the user in the immersive
world achieving enhanced presence, harnessing latest advances in com-
puter vision, glasses or head-mounted-displays featuring embedded mo-
bile devices. A common issue in all of them is interpolation errors while
using different linear and Quaternion algebraic methods when a) track-
ing the user’s position and orientation (translation and rotation) using
computer vision b) tracking using mobile sensors c) tracking using ges-
ture input methods to allow the user to interactively edit the augmented
scene (translation, rotation and scale) d) having animation blending of
the virtual characters that augmented the mixed reality scenes (trans-
lation and rotation). In this work, we propose an efficient method for
robust authoring (rotation) of Augmented reality scene using Euclidean
Geometric Algebra (EGA) rotors and we propose two fast animation
blending methods using GA and CGA. We also compare the efficiency
of different GA code generators: a) Gaigen library, b) libvsr and c)
Gaalop using our animation blending methods and compare them with
other alternative animation blending techniques: a) Quaternions and b)
Dual-Quaternions, so that a future user of GA libraries can choose the
most appropriate one that will give the most optimal and faster results.

Mathematics Subject Classification (2010). Primary 97R60.

Keywords. Geometric Algebra, Conformal model, Augmented Reality,
Animation Blending, Animation.

2

1. Introduction

In this work, we aim to enhance the Conformal Geometric Algebra (CGA)[2,
3, 11] as the mathematical background for display and character animation
control [12] in immersive and virtual technology [1], such as head-mounted
displays (e.g. Google CardboardTM) or modern smartphones; a framework
that offers a smooth and stable calibration/control can be used in real-time
mobile mixed reality systems that featured realistic, animated virtual human
actors who augmented real environments. GA is a mathematical framework
that provides a convenient mathematical notation for representing orienta-
tions and rotations of objects in three dimensions, a compact and geomet-
rically intuitive formulation of algorithms, and an easy and immediate com-
putation of rotors; CGA extends the usefulness of the 3D GA by expanding
the class of rotors to include translations, dilations and inversions. Rotors are
simpler to manipulate than Euler angles, more numerically stable and more
efficient than rotation matrices, avoiding the problem of Gimbal lock. This
work allows us to a) propose a method that handles rotations with GA rotors
that avoids the problem of Gimbal Lock, b) blend rotations and translations
between character animations using CGA under a single geometric algebraic
framework for Mixed Reality applications c) unify previously separated linear
and Quaternion Algebra for rotation interpolation with fast CGA rotors, d)
compare the performance of different GA code generators so that a future
user of GA libraries can choose the most appropriate one that will give the
most optimal and faster results and e) compare the performance of GA and
CGA animation blending methods with Quaternions and Dual-Quaternions
interpolation.

In computer graphics are used many alternative methods to represent
rotations. The most common way is by using linear algebra. The angle of ro-
tation is defined on each axis and converted to transformation matrices, each
one represents rotation around x, y and z axis and then are multiplied to-
gether to extract the final rotation. A way for representing rotation combined
with translation is Dual-Quaternions.

The most important properties when developing applications especially
on mobile devices are robustness and efficiency. The transformations must not
contain any discontinuities and be smooth. Also, they should consume the
smallest necessary amount of memory and be computationally fast. Gimbal
lock is a common problem arising when using euler angles and can be solved
using GA rotors. Gimbal lock is the loss of one degree of freedom in 3D space
which occurs when the axes of two of the three gimbals are driven into a
parallel configuration and this leads to unexpected behaviour.

In this work, we propose a method for robust authoring (rotation) of
Augmented reality scene using EGA rotors. Moreover, we present two fast
animation blending methods using 3D EGA and CGA. We implemented
these methods using Gaalop Precompiler (CLUCalc scripting language), GA
Gaigen library and libvsr and we compare their efficiency with Dual-Quaternions
and Quaternions methods. On Figure 1 is shown our AR application.

3

1.1. Problem statement and main novelty

Our work, presents an efficiency comparison between three different GA code
generators which are a) GA Gaigen library, b) libvsr and c) Gaalop precom-
piler, in order to provide to the audience that is interested in using GA code
generators information about their performance. We also propose an efficient
method for authoring of rotation of the Augmented reality scene using EGA
rotors and we show that GA gives smooth results compared to euler angles
that cause Gimbal Lock. Moreover, we propose two animation blending meth-
ods using EGA and CGA and we show that CGA approach implemented with
Gaalop precompiler can give very fast results similar to Dual-Quaternions.
However, the benefit of using CGA is that supports rotation, translation
and dilation in a single representation compared to Dual-Quaternions that
support only rotation and translation.

Figure 1. The AR application.

2. Previous work

In recent years, Geometric Algebra and Conformal Geometric Algebra math-
ematical tools are used in many areas of Computer Science and Computer
Engineering such as Computer Vision, Computer Graphics and Robotics.

Dorst et al. [4] presents applications of GA and CGA in the field of
Computer Graphics and provides useful examples written in C++ using GA
Gaigen library. Some of these applications are interpolating rotations, recur-
sive ray-tracing for illumination, constructing Binary Space partition (BSP)
trees, handling rotations with rotors and handling intersections for collision
detection and shadows.

In [12, 13] propose two alternative methodologies for implementing real-
time Animation Interpolation for skinned characters using GA rotors. They
compare their methodology with alternative animation blending techniques

4 Papaefthymiou M., Hildenbrand D. and Papagiannakis G.

such as Quaternion Linear Blending and Dual-Quaternion slerp interpolation
and show that they achieve smaller computation time, lower memory usage
and more visual quality results. Moreover, Wareham et al. [9] proposes a
method for pose and position interpolation using CGA which can also be
extended to higher-dimension spaces.

[3, 14] applied Conformal Geometric Algebra for inverse kinematics
solvers. Aristidou et al. [3] proposed a fast methodology called FABRIK,
for solving the IK problem of a 3D human hand, which can also be used for
other IK applications. This algorithm uses a forward and backward iterative
methodology, to extract each joint position by locating a point on a line,
and integrates rotation and orientation constraints. Hildenbrand et al. [14]
presents an algorithm for inverse kinematics by generating code using two dif-
ferent optimizations, the first one is based on Maple and the second one on
Gaigen2. Wareham et al. [10] propose an algorithm for interpolating between
two or more displacements which combine both translation and rotation to
a unique representation which produces smooth results.

3. AR Scene Authoring

We handle rotations of the AR scene objects by replacing euler angles with
EGA rotors. GA rotors are simpler to manipulate than euler angles, more
numerically stable and more efficient than rotation matrices. Moreover, GA
rotors do not produce discontinuities to the rotation, by avoiding the problem
of Gimbal Lock. Our main novelty, lies in the replacement of euler angles with
fast and robust GA rotors while the user rotates the objects of the AR scene.
This algorithm was developed using Gaigen2 C++ code generator and GA
Gaigen library.

3.1. Algorithm description

As a first step, we set the initial rotation of the scene on each axis in euler
angles representation and we compute the current GA rotor. We convert
euler angles to Quaternion representation and then compute the angle and
axis of the Quaternion in order to calculate the current GA rotor using the
exponential Formula:

R = e−I3u
φ
2 (3.1)

where I3 is the pseudoscalar, φ is the angle of rotation and u is the axis of
rotation.

The code that computes the initial rotor of the AR scene given the euler
angles is provided on Section A.3. Our implementation gives the ability to
the user to rotate the scene on global axis or on object’s local axis.

When we rotate on local axis we rotate the GA basis vectors with the
current GA rotor (Rcur) in order to define the new local coordinate system.
We rotate the coordinate system by sandwiching the 3D EGA basis vectors

5

(e1, e2, e3) between the current GA rotor and its inverse rotor. For example,
to rotate the basis vector e1 we use the Formula below:

rot e1 = Rcure1R
−1
cur

as deduced from:

RAR−1 (3.2)

where A is a multivector and R is a rotor.
In this way, we compute the new rotated basis vectors rot e1, rot e2,

rot e3 which are used to define the new planes of rotation (bivectors) by con-
structing the outer product ∧ between the new rotated basis vectors which
are: rot e1 ∧ rot e2, rot e2 ∧ rot e3 and rot e3 ∧ rot e1 on x, y, z axis re-
spectively. When we change the axis of rotation we need to define the new
local coordinate system. When rotating on the same axis we need to change
the angle of rotation, recompute the current rotor and multiply it with the
previous rotor. We compute the current rotor using Equation 3.3 as deducted
from Equation 3.1.

R = ev
φ
2 (3.3)

where v is the plane of rotation and φ is the angle of rotation. Section A.5
provides the code to rotate on X local axis and Section A.4 shows how to
convert GA rotor to matrix representation. On Figure 2 is shown the rotation
of a character on local X axis in our AR application.

In contrast, when we rotate in global coordinate system, the planes of
rotation are defined by constructing the outer product between the GA basis
vectors (e1, e2, e3) i.e. e1 ∧ e2, e2 ∧ e3 and e3 ∧ e1.

Figure 2. Rotating a character on X local axis with GA rotors.

6 Papaefthymiou M., Hildenbrand D. and Papagiannakis G.

4. Animation Blending

We have developed Animation Blending using two fast alternative methods.
The first one is by using EGA rotors and the second one CGA motors. On
the first method, we fully replace Quaternions for rotation interpolation with
EGA rotors and on the second one, we blend rotations and translations for
character animation using fast CGA motors. For optimization purposes we
precompute Quaternions to rotors representation. We have developed GA
and CGA approach with Gaigen2 C++ code generator (GA Gaigen library),
CLUCalc (Gaalop precompiler) and libvsr.

4.1. Gaalop Precompiler

We use Gaalop Precompiler [5] in order to have optimized Geometric Alge-
bra code and more efficient results. We have used the visualization tool for
GA CLUCalc v4.3 [8] in order to produce our algorithms and then Gaalop
standalone application to generate the C++ optimized code. Gaalop pre-
compiler provides three different approaches of optimization: GAPP (Geo-
metric Algebra Parallelism Program), Maple and Table-Based Approach.
For generating the optimized C++ code we have chosen Table-Based Ap-
proach with the symbolic-computation tool Maxima [7] support and we have
enabled optOneExpressionRemoval, optConstantPropagation, optUnusedAs-
signments and optInserting in the Configuration tab of the standalone appli-
cation. The Table-Based approach uses precomputed multiplication tables to
generate code that does not include any Geometric Algebra operations.

4.2. Algorithm description

Our main novelty, lies in the employment of CGA motors as fast, drop-in
replacements for Quaternion Algebra, during animation blending for skinned
characters. On the first approach, we represent rotation with GA rotors and
on the second approach, we represent rotation combined with translation
with CGA motors. Then we use GA and CGA exponential formulas to inter-
polate between the two keyframes of the character animation. For the CGA
approach, we also provide an alternative way for interpolation using linear
interpolation of motors. On Figure 3, is illustrated the animation interpola-
tion with CGA logarithm interpolation approach using Gaigen library on a
character with walk animation.

4.2.1. GA rotors approach. Firstly, we convert the rotation of the two keyframes
to GA rotors. We compute the angle and the axis of the Quaternions and ex-
tract the GA rotors using the Equation 3.1. Section A.3 shows how to convert
Quaternion to GA rotor representation.

After expressing the source and destination rotation to GA rotors we
compute the interpolated rotor base on a factor number that defines the
animation interpolation step. We compute the rotor R from source (Rsrc) to
destination (Rdst) rotor using the Equation 4.1. To compute the final rotor
(Rfinal), we use the logarithm formula to interpolate the rotor R in N steps
as given by the Equation 4.2.

7

On Table 1 and Section A.1 we provide the implementation of GA ap-
proach with CLUCalc and libvsr respectively. For more details for this ap-
proach refer to [13] which also, provides the implementation using GA Gaigen
library.

R = R−1srcRdst (4.1)

Rfinal = Rsrce
log(R)∗N (4.2)

a x i s = srcX∗ e1 + srcY∗ e2 + s r c z ∗ e3 ;

a x i s = a x i s / s q r t (a x i s . a x i s) ;

p = ∗ a x i s ;

R=exp (−0.5∗ ang le ∗p) ;

ax i s 2 = dstX∗ e1 + dstY∗ e2 + dstZ∗ e3 ;

ax i s 2 = ax i s2 / s q r t (ax i s2 . ax i s 2) ;

p2 = ∗ ax i s2 ;

R2=exp (−0.5∗ angle2 ∗p2) ;

RtotQ = ˜R∗R2 ;

r o t I n t e r p o l a t e d = exp (f a c t o r ∗RtotQ) ;

f i na lR= R∗ r o t I n t e r p o l a t e d ;

Table 1. CLUCalc implementation for Animation Blending
with GA rotors approach.

4.2.2. CGA motors approach. A a first step we convert Quaternion and
translation of the two keyframes to CGA motors as shown on Section A.6
The translator part of the CGA motor is computed using the Equation:

T = e−
1
2 te∞ (4.3)

where t is the vector that represents translation:

t = t1e1 + t2e2 + t3e3 (4.4)

We compute the rotor with the same way as the GA approach as described
in Section 4.2.1. Motor is computed by multiplying Rotor (R) and Translator
(T) as given by the following Equation:

M = RT (4.5)

After expressing the source and destination rotation-translation to CGA
motors we compute the interpolated motor base on a factor (f) number that
defines the animation interpolation step.

8 Papaefthymiou M., Hildenbrand D. and Papagiannakis G.

In CLUCalc implementation we compute the interpolated motor from
source (Msrc) to destination (Mdst) motor using linear interpolation (Equa-
tion 4.6). In order to convert the CGA motor to matrix representation we
compute the images of basis blades e1 ∧ n∞, e2 ∧ n∞, e3 ∧ n∞ and no ∧ e∞
as proposed in [4].

M = Msrc ∗ (1− f) +Mdst ∗ f (4.6)

Concerning GA Gaigen library and libvsr we interpolate using loga-
rithms. We compute the motor from source to destination motor using the
Equation 4.7. Then, we use the logarithm formula to interpolate between the
motors inN steps as described in Equation 4.8. Table 2 shows how to compute
the interpolated CGA motor. In order to convert the CGA motor to matrix
representation we compute images of basis blades e1 ∧ n∞,e2 ∧ n∞,e3 ∧ n∞
and no ∧ e∞ as proposed in [4].

M = M−1srcMdst (4.7)

Mfinal = Msrce
log(M)∗N (4.8)

On Table 2 and on section A.2 we provide the implementation for CGA
motors using CLUCalc and libvsr respectively. Section A.7 shows how to
compute the interpolated CGA motor.

Figure 3. Animation Interpolation with CGA motors using
GA Gaigen library.

5. Implementation details

The main framework used for our AR application is the open source OpenGL
Geometric Application (glGA) [15, 16] framework. glGA is a lightweight,

9

t r=tr1X∗ e1+tr1Y∗ e2+tr1Z ∗ e3 ;

trNew=1−0.5∗ t r ∗ e i n f ;

a=VecN3(axis1X , axis1Y , axis1Z) ;

a x i s s = ∗(aˆVecN3 (0 , 0 , 0)ˆ e i n f) ;

a x i s=a x i s s /abs (a x i s s) ;

R = Exp approx(−ang le /2∗ a x i s) ;

t r2=tr2X∗ e1+tr2Y∗ e2+tr2Z ∗ e3 ;

trNew2=1−0.5∗ t r2 ∗ e i n f ;

a2=VecN3(axis2X , axis2Y , axis2Z) ;

a x i s s 2 = ∗(a2ˆVecN3 (0 , 0 , 0)ˆ e i n f) ;

ax i s 2=a x i s s 2 /abs (a x i s s 2) ;

R2 = Exp approx(−angle2 /2∗ ax i s2) ;

motor1=trNew∗R;

motor2=trNew2∗R2 ;

m = motor1∗(1−alpha) + motor2∗ alpha ;

x=m∗ e1ˆ e i n f /m;

y=m∗ e2ˆ e i n f /m;

z=m∗ e3ˆ e i n f /m;

t=m∗ e0ˆ e i n f /m;

Table 2. CLUCalc implementation for Animation Blending
with CGA motors approach.

shader based C++ Computer Graphics (CG) framework which is developed
for educational as well as research purposes. glGA is a cross platform appli-
cation development framework and supports many mobile and desktop plat-
forms. glGA contains many operations like compiling and loading shaders,
textures, sounds, animations, Image Based Lighting, loading 3D static meshes
as well as rig meshes. In order to help the students visualize the externally
rigged virtual characters (e.g. Collada or MD5 models) glGA provides the
functionality required to parse the bone tree in real-time and retrieve the
transformation matrix from each one of the joints. These matrices are then
passed as uniform and vertex attribute parameters to the vertex shader.

In glGA framework is integrated the MetaioSDK [15] framework. This
framework is responsible for the AR functionalities and can perform marker-
less SLAM-based 3D camera tracking.

We have developed glGA in such a way so that all of its examples and
sample assignments can run in any of the standard desktop and mobile plat-
forms: Windows, Linux, OSX and iOS. In order for all of those (10 in total)

10 Papaefthymiou M., Hildenbrand D. and Papagiannakis G.

applications to be supported, we had to create a short Platform-Wrapper
component that handles the platform specific functionality.

In addition to the desktop platforms of Windows, Linux and OSX, the
glGA examples are also supported in the mobile iOS platform. Here is where
the Platform-Wrapper is also employed not only due to the header files but
also due to the different OpenGLES methods and calls (instead of standard
OpenGL). An additional difference between desktop and mobile platforms is
the way that external assets (e.g. textures, 3D models etc.) are loaded by the
application. E.g. iOS uses bundles, while Windows, Linux and Mac retrieve
the assets directly from the disk with either relative or absolute paths. Other
than these, the current time retrieval is also different from desktop to mobile.
E.g. it is essential during character animation, where we have to recalculate
the matrix transformations based on the time passed since the animation
started. As we have already, mentioned the code of the examples and assign-
ments is in portable, standard C++, thus a standard C++ compiler (e.g. gcc,
LLVM, Intel or Microsoft) is mandatory to be employed. In glGA, we have
also included some IDE project files for certain platforms already set up and
ready to be built and executed. The project files that exist in glGA are for
Visual Studio 2010 for Windows and Xcode 7.2 for Mac and iOS, while we
also provide the basic gcc/g++ makefiles for Linux. The only modification
required is to define the specific platform on top of the Platform-Wrapper
header file. Of course, other IDEs can also be used as long as they support
standard C++.

6. Results

In this section, we compare our GA and CGA animation interpolation ap-
proaches with Quaternions and Dual-Quaternions and provide efficiency com-
parison of the different GA code generators. We obtained our results on a
MacBook Pro with processor 2.5 GHz Intel Core i7 and an NVIDIA Geforce
GT 750M 2048 MB graphics card. We applied all the methodologies on 3 dif-
ferent characters/animations. Our characters are of dae format and consist
of 43-54 joints and 4881-135976 triangles.

Libvsr headers generate optimized code at compile-time through tem-
plate metaprogramming and Gaalop precompiler generates C++ optimized
code that does not contain any GA operations. For that reason, Libvsr and
Gaalop give faster results than Gaigen library. Furthermore, concerning GA
approaches, Gaalop with CGA gives the most fast results because linear in-
terpolation is faster than interpolating using logarithms. Table 3 provides
the average time needed to execute animation interpolation on all joints of
each of the 3 characters illustrated on Figure 4. Our results show that Dual-
Quaternions are the most efficient method for animation blending. Moreover,
CGA (especially CGA Gaalop) is almost as efficient in terms of performance
with Dual-Quaternions but superior in compact, efficient, inclusive represen-
tation of composition of transformations (rotation, translation, dilation).

11

Figure 4. The three characters used to compare the ani-
mation blending methods.

Method Character1 Character2 Character3

Quaternions 0.00044 0.00179 0.00108

Dual-Quaternions 0.00024 0.0016 0.00092

GA Gaigen 0.00131 0.00250 0.00162

CGA Gaigen 0.00182 0.00289 0.00229

GA Gaalop 0.00155 0.00282 0.00201

CGA Gaalop 0.00034 0.00177 0.00115

GA Versor 0.00076 0.00201 0.00157

CGA Versor 0.00085 0.00209 0.00174

Table 3. Average time in milliseconds (msecs) for each an-
imation blending method for the three characters of Figure
3.

7. Conclusions and Future work

In this work, we achieved more efficient and robust AR scene authoring that
avoids Gimbal lock by handling rotations of the AR objects with GA rotors.
Moreover, we focused on implementing two fast methods for animation blend-
ing for skinned characters using EGA and CGA models. On the first approach
we represent rotations with GA rotors and on the second approach we express
translations and rotations with CGA motors. We interpolate using only the
logarithm of rotors/motors respectively. For CGA motors we also interpolate
using linear interpolation. We implemented our animation blending methods
using GA Gaigen library, generating C++ code using Gaalop precompiler
for more optimized code and libvsr. We compared our animation blending

12 Papaefthymiou M., Hildenbrand D. and Papagiannakis G.

approaches with Quaternions and Dual-Quaternions techniques. Our results
show a) that Dual-Quaternions and CGA approach implemented with Gaalop
have similar efficiency and b) libvsr and Gaalop generate more efficient results
compared to GA Gaigen library. We also compared the efficiency of different
GA code generators so that a future user of GA libraries can choose the most
appropriate one that will give the most optimal and faster results.

In the future, we aim to avoid conversions between different data types
in order to achieve more efficient results. We will use rotors directly in shader
programs to avoid converting from rotor to matrix representation. Moreover,
we aim to extend our CGA framework by applying GA for global illumination
and specifically, for rotating spherical harmonics for Precomputed Radiance
Transfer for real-time rendering.

Acknowledgments

The research leading to these results has received funding from the European
Union People Programme (FP7-PEOPLE-2013-ITN) under grant agreement
no 608013.

References

[1] Egges, A., Papagiannakis, G., and Magnenat-Thalmann, N. (2007). Presence
and interaction in mixed reality environments. Visual Computer 23, 5, 317333.

[2] Hestens, D., Sobczyk, G. (1984). Clifford Algebra to Geometric Calculus: A
Unified Language for Mathematics and Physics. Reidel, Dordrecht.

[3] Aristidou, A., Lasenby, J. (2011). Inverse Kinematics solutions using Conformal
Geometric Algebra, In L. Dorst and J. Lasenby (Eds), Guide to Geometric
Algebra in Practice, Springer Verlag.

[4] Dorst, L., Fontijne, D., and Mann, S. (2010). Geometric Algebra for Computer
Science. Morgan Kaufmann.

[5] Hildenbrand, D. (2013). Foundations of Geometric Algebra Computing.

[6] Perass, C. (2009). Geometric Algebra with Applications in Engineering.

[7] Maxima Development Team. Maxima, a computer algebra system. version
5.36.1. Available at http://maxima.sourceforge.net/, 2015.

[8] Christian Perwass. The CLU home page. Available at
http://www.clucalc.info,2010.

[9] Wareham, R., Cameron, J. and Lasenby, J. (2005). Applications of Conformal
Geometric Algebra in Computer Vision and Graphics. In Proceedings of the 6th
International Conference on Computer Algebra and Geometric Algebra with
Applications, Shanghai, China 2005

[10] Wareham, R. and Lasenby, J. (2008). Mesh Vertex Pose and Position Interpo-
lation Using Geometric Algebra, Articulated Motion and Deformable Objects,
5098, 122-131

[11] Kanatani, K. Understanding Geometric Algebra: Hamilton, Grassmann, and
Clifford for Computer Vision and Graphics. A K Peters/CRC Press, 2015.

13

[12] Papagiannakis, G., Greasidou, E., Trahanias, P. and M. Tsioumas. A geometric
algebra animation method for mobile augmented reality simulations in digital
heritage sites. The Computer Journal, pages 258267, 2014.

[13] Papagiannakis, G. Geometric algebra rotors for skinned character animation
blending. In SIGGRAPH Asia 2013 Technical Briefs, SA 13, pages 11:111:6,
New York, NY, USA, 2013. ACM.

[14] Hildenbrand, D., Fontijne, D., Wang, Y., Alexa, M. and Dorst, L. Competitive
runtime performance for inverse kinematics algorithms using conformal geo-
metric algebra. In Eurographics 2006 - Short Presentations, Vienna, Austria,
September 4-8, 2006, pages 58, 2006.

[15] Papagiannakis, G., Papanikolaou, P., Greasidou, E. and Trahanias, P. glga: an
opengl geometric application framework for a modern, shader-based computer
graphics curriculum. Eurographics 2014, pages 18, 2014.

[16] Papaefthymiou, M., Feng, A., Shapiro, A. and Papagiannakis, G. A fast and
robust pipeline for populating mobile AR scenes with gamified virtual charac-
ters. In SIGGRAPH Asia 2015 Mobile Graphics and Interactive Applications,
SA ’15, pages 22:122:8, New York, NY, USA, 2015. ACM.

14 Papaefthymiou M., Hildenbrand D. and Papagiannakis G.

Appendix A. GA code for AR scene authoring and Animation
Blending

A.1. GA animation blending approach using libvsr

glm : : mat4 interpolateGAVersor (Rot srcR , Rot dstR , f l o a t Factor){
Rot s r c d s t = ! srcR ∗ dstR ;

Rot log = Gen : : l og (s r c d s t) ;

Rot r e s u l t = srcR ∗ Gen : : mot(l og ∗ Factor) ;

Flp FlatPoint2 = r e s u l t ∗ (Vec : : xˆ I n f (1)) ∗ ! r e s u l t ;

Flp FlatPoint3 = r e s u l t ∗ (Vec : : yˆ I n f (1)) ∗ ! r e s u l t ;

Flp FlatPoint4 = r e s u l t ∗ (Vec : : zˆ I n f (1)) ∗ ! r e s u l t ;

glm : : mat4 f i n a l (1 . 0) ;

f i n a l [0] [0] = FlatPoint2 . va l [0] ; f i n a l [0] [1] = FlatPoint2 . va l [1] ;

f i n a l [0] [2] = FlatPoint2 . va l [2] ; f i n a l [0] [3] = 0 ;

f i n a l [1] [0] = FlatPoint3 . va l [0] ; f i n a l [1] [1] = FlatPoint3 . va l [1] ;

f i n a l [1] [2] = FlatPoint3 . va l [2] ; f i n a l [1] [3] = 0 ;

f i n a l [2] [0] = FlatPoint4 . va l [0] ; f i n a l [2] [1] = FlatPoint4 . va l [1] ;

f i n a l [2] [2] = FlatPoint4 . va l [2] ; f i n a l [2] [3] = 0 ;

}

A.2. CGA animation blending approach using libvsr

Mot interpolateCGAVersor (vec3 t r a n s l a t i o n 1 , vec3 t r a n s l a t i o n 2 ,

Rot srcR , Rot dstR , f l o a t Factor){
const Drv srcTr (t r a n s l a t i o n 1 . x , t r a n s l a t i o n 1 . y , t r a n s l a t i o n 1 . z) ;

Drv dstTr (t r a n s l a t i o n 2 . x , t r a n s l a t i o n 2 . y , t r a n s l a t i o n 2 . z) ;

Trs srcT=Gen : : t r s (srcTr) ;

Trs dstT=Gen : : t r s (dstTr) ;

Mot mot = srcT ∗ srcR ;

Mot mot2 = dstT ∗ dstR ;

Mot s r c d s t = ! mot ∗ mot2 ;

Mot log = Gen : : l og (s r c d s t) ;

Mot motor = mot ∗ Gen : : mot(l og ∗ Factor) ;

r e turn motor ;

}

A.3. Euler angles to GA rotor representation

r o t o r EulerToRotor (vec3 e u l e r){

15

destQ = quat (e u l e r) ;

f l o a t angleDest=ang le (destQ) ;

vec3 ax i sDest=a x i s (destQ) ;

mv v=u n i t e (ax i sDest . x∗ e1+ax i sDest . y∗ e2+ax i sDest . z∗ e3) ;

r e turn r o t o r (exp ((angleDest)/2∗(− I3 ∗v))) ;

}

A.4. Convert GA rotor to matrix representation

mat4 rotorToMat4 (mv ro to r){
quat quat (f l o a t (r o t o r) , r o t o r . e1e2 () ,

r o t o r . e3e1 () , r o t o r . e2e3 ()) ;

r e turn mat4 cast (quat) ;

}

A.5. Rotate on X local axis with GA rotors

void rotateXLocal (f l o a t angle , i n t& prevRot , mv &rotor ,

mv& newe1 ,mv& newe2 ,mv& newe3 , mat4 &f i n a l R o t a t i o n){
// s e t cur rent r o t a t i o n and r o t a t e coord ina te system

i f (prevRot != ROTATIONX){
prevRot = ROTATIONX;

rotateCoordinateSystem (rotor , newe1 , newe2 , newe3) ;

}
mv plane=newe1ˆnewe2 ; // d e f i n e plane on r o t a t i o n

mv Rsrc= r o t o r (exp (plane ∗(ang le / 2 . 0)) ;

r o t o r=Rsrc∗ r o t o r ;

f i n a l R o t a t i o n = rotorToMat4 (r o to r) ;

}

A.6. Convert translation and rotation to CGA motor representation

mat4 ToMotor (vec3 t r a n s l a t i o n , quat quatern ion){
srcQ=normal ize (srcQ) ;

f l o a t ang l eSrc=angle (srcQ) ;

vec3 a x i sS r c=a x i s (srcQ) ;

destQ=normal ize (destQ) ;

f l o a t angleDest=ang le (destQ) ;

vec3 ax i sDest=a x i s (destQ) ;

// ang le in rad ians

mv ro to r =exp (ang leSrc /2.0∗(− I3 ∗ (uC))) ;

mv uC=u n i t e (ax i s S r c . x∗ e1+ax i sS r c . y∗ e2+ax i sS r c . z∗ e3) ;

vectorE3GA t= vectorE3GA (t r a n s l a t i o n . x∗ e1+ t r a n s l a t i o n . y

∗ e2+t r a n s l a t i o n . z∗ e3) ;

normal i zedTrans la tor TC=exp (f r e e V e c t o r (−0.5 f ∗(t ˆ n i))) ;

// cons t ruc t motor (t r a n s l a t i o n and r o t a t i o n)

TRversor TRC = TRversor (TC∗ r o t o r) ;

r e turn TRC;

}

16 Papaefthymiou M., Hildenbrand D. and Papagiannakis G.

A.7. Compute the interpolated CGA motor for Animation blending

mat4 interpolateCGA (TRversor TRC, TRversor TRD, f l o a t Factor){
TRSversor ve r so r= TRSversor (TRC∗exp (dua lL ine (Factor ∗

l og (TRSversor (i n v e r s e (TRC)∗TRD))))) ;

TRSversor iVer so r = i n v e r s e (ve r so r) ;

r e turn makeMat4(f l a t P o i n t (ve r so r ∗ e1n i ∗ iVe r so r) ,

f l a t P o i n t (ve r so r ∗ e2n i ∗ iVe r so r) ,

f l a t P o i n t (ve r so r ∗ e3n i ∗ iVe r so r) ,

f l a t P o i n t (ve r so r ∗noni ∗ iVe r so r)) ;

}

Margarita Papaefthymiou
Institute of Computer Science, Foundation for Research and Technology Hellas and
Computer Science Department,University of Crete,
Heraklion, Greece
e-mail: margarita@csd.uoc.gr

Dietmar Hildenbrand
Hochschule RheinMain,
Wiesbaden, Germany
www.gaalop.de
e-mail: dietmar.hildenbrand@gmail.com

George Papagiannakis
Institute of Computer Science, Foundation for Research and Technology Hellas and
Computer Science Department,University of Crete,
Heraklion, Greece
e-mail: papagian@ics.forth.gr

