
The Visual Computer
https://doi.org/10.1007/s00371-020-01919-0

ORIG INAL ART ICLE

Immersive visual scripting based on VR software design patterns for
experiential training

Paul Zikas1 · George Papagiannakis2 · Nick Lydatakis1 · Steve Kateros1 · Stavroula Ntoa3 · Ilia Adami3 ·
Constantine Stephanidis4

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Virtual reality (VR) has re-emerged as a low-cost, highly accessible consumer product, and training on simulators is rapidly
becoming standard in many industrial sectors. However, the available systems are either focusing on gaming context, fea-
turing limited capabilities or they support only content creation of virtual environments without any rapid prototyping and
modification. In this project, we propose a code-free, visual scripting platform to replicate gamified training scenarios through
rapid prototyping and VR software design patterns. We implemented and compared two authoring tools: a) visual scripting
and b) VR editor for the rapid reconstruction of VR training scenarios. Our visual scripting module is capable of generating
training applications utilizing a node-based scripting system, whereas the VR editor gives user/developer the ability to cus-
tomize and populate new VR training scenarios directly from the virtual environment. We also introduce action prototypes,
a new software design pattern suitable to replicate behavioral tasks for VR experiences. In addition, we present the training
scenegraph architecture as the main model to represent training scenarios on a modular, dynamic and highly adaptive acyclic
graph based on a structured educational curriculum. Finally, a user-based evaluation of the proposed solution indicated that
users—regardless of their programming expertise—can effectively use the tools to create and modify training scenarios in
VR.

Keywords Virtual reality · Authoring tool · VR training · Visual scripting

B Paul Zikas
paul@oramavr.com

George Papagiannakis
george.papagiannakis@oramavr.com

Nick Lydatakis
nick@oramavr.com

Steve Kateros
steve@oramavr.com

Stavroula Ntoa
stant@ics.forth.gr

Ilia Adami
iadami@ics.forth.gr

Constantine Stephanidis
cs@ics.forth.gr

1 ORamaVR, Heraklion, Greece

2 ORamaVR, Institute of Computer Science, Foundation for
Research and Technology-Hellas, Department of Computer
Science, University of Crete, Heraklion, Greece

1 Introduction

Virtual reality has advanced rapidly, offering highly inter-
active experiences, arousing interest in both the academic
and the industrial community. VR is characterized by highly
immersive and interactive digital environments where user
experiences another dimension of possibilities. As already
known from conducted trials [2,17], the training capabilities
of VR simulations offer skill transfer from the VR to real-life
proposing an effective tool to fit in modern curricula. From
pilots to surgeons, VR has a strong impact on training due
to embodied cognition, psychomotor capabilities (dexterous
use of hands) and high retention level [12].

3 Institute of Computer Science Foundation for Research and
Technology-Hellas, Heraklion, Greece

4 Institute of Computer Science, Foundation for Research and
Technology-Hellas, Department of Computer Science,
University of Crete, Heraklion, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-020-01919-0&domain=pdf
http://orcid.org/0000-0003-2422-1169

P. Zikas et al.

Authoring tools encapsulate key software functionalities
and features for content creation. The software architecture
of such system empowers programmers with the necessary
tools for content creation. However, existing platforms do not
sufficiently propose a complete methodology to reconstruct
a training scenario in virtual environments. Training simula-
tions are often implemented in modern game engines using
native tools without any customization or specially designed
features for generating of immersive scenarios rapidly. In
addition, there are no prototyped software patterns specially
formulated for VR experiences, leading to complex imple-
mentations and lack of code reusability.

Previously, we have proven that our VR training platform
[3] makes medical training more efficient. In a revolu-
tionary clinical study [2] in cooperation with New York
University that established—for the first time in the medi-
cal bibliography—skill transfer and skill generalization from
VR to the real Operating Room in a quantifiable, measurable
ROI.

In this project, we propose a visual scripting system capa-
ble of generating VR training scenarios following a modular
Rapid Prototyping architecture. Inspired from game pro-
gramming patterns, we implemented new software design
patterns named Actions for VR experiences to support a vari-
ety of commonly used interactions and procedures within
training scenarios offering great flexibility in the develop-
ment of immersive VRmetaphors. We designed our solution
as a collection of authoring tools combining a visual script-
ing system and an embedded VR editor forming a bridge
from product conceptualization to product realization and
development in a reasonably fast manner without the fuss
of complex programming and fixtures. Our goals and design
decisions were the following:

– Educational pipeline:We are interested in representing
an educational process into an efficient data structure, for
simple creation, easy maintenance and fast traversal.

– Modular architecture: To support a wide variety of
interactions and different behaviors within the virtual
environment, we want our system to integrate a mod-
ular architecture of different components linked into a
common structure.

– Code-free SDK: Our intentions were to develop a plat-
form where users can create VR training scenarios
without advanced programming knowledge.We also aim
to study techniques for the visual creation of VR experi-
ences.

– Rapidprototyping:Weare interested inmaking reusable
prototypedmodules to implement more complex interac-
tive behaviors derived from elementary blocks.

– VR software design patterns:We aim to support a large
number of interactive behaviors in VR applications to

promote new software patterns specially formulated to
speed up content creation in VR.

This paper is organized as follows. In Sect. 2, we present
the state-of-the-art in training simulations and similar author-
ing tools. In Sect. 3, we introduce our solution with a brief
description of our software modules. Section 4 presents the
training scenegraph architecture. Section 5 describes the
Action Prototypes and our rapid prototyping solution. Sec-
tion 6 presents the visual scripting tool and Section 7 the VR
editor. In Section 8, we discuss our results from the eval-
uation process. Section 9 concludes and defines the future
work.

2 Related work

In this section, we present the state-of-the-art in VR training,
its impact on education and similar authoring platforms.

2.1 The impact of VR in training and education

The engagement of education with novel technological solu-
tions provides new opportunities to increase collaboration
and interaction throughparticipants,making the learningpro-
cess more active, effective, meaningful and motivating [5].
Collaborative VR applications for learning [13], studies for
the impact of VR in exposure treatment [7] as well as surveys
for human social interaction [20] have shown the potential
of VR as a training tool. The cognitive aspect of VR learning
is already known from conducted trials [11]. Recent exam-
ples are featuring the learning capabilities of VR in surgical
simulations [21] with remarkable results.

Focusing on the educational factor, the use of VR for
knowledge transfer and e-learning is now extended as the
R&D grows around entire VR environments where the learn-
ing takes place [16]. Virtual Reality rapidly increases its
potential and influence on e-learning applications [10] by tak-
ing advantage of twobasic principles: a) the embodiment [25]
and b) the increased knowledge retention [6] with immersive
environments capable of presenting a realistic scenario as it
is, as it would be in real-life.

2.2 Authoring tools for content creation

Themain concept behind authoring tools is to develop frame-
works capable of generating content with minimal changes
to speed up content creation while improving product main-
tenance.

BricklAyeR [26] proposes a collaborative platformdesigned
for users with limited programming skills that allows the cre-
ation of Intelligent Environments through a building-block
interface. Another interesting project is ARTIST [15], a plat-

123

Immersive visual scripting based on VR software design patterns for…

Fig. 1 The architectural diagram of our system. The platform consists
of a training scenegraph along with the action prototypes. In a higher
hierarchy, the authoring tools (visual scripting and VR editor) are facili-

tating tools to generate interactive behaviors in the virtual environment.
Finally, the training scenarios are implemented from the auto-generated
code

form that provides tools for real-time interaction between
human and non-human characters to generate reusable, low
cost and optimized MR experiences. Its aim is to develop
a code-free system for the deployment and implementation
of MR content while using semantically data from heteroge-
neous resources.

Another authoring tool, ExProtoVAR [23], generates
interactive experiences in AR featuring development tools
specially designed for non-programmers, without necessar-
ily a technical background with AR interfaces. In the field of
interactive storytelling, StoryTec [14] platform facilitates an
authoring tool to generate and represent storytelling-based
scenarios in various domains (serious games, e-learning and
training simulations).

2.3 Visual programming

Visual programming is getting more publicity as more plat-
forms and tools are emerging. We can separate them into
two categories according to their visual appearance and basic
functionalities: a) block-based and b) node-based scripting
languages

Block visual languages consist ofmodular blocks that rep-
resent fundamental programming utilities. OpenBlocks [24]
proposes an extendable framework that enables application
developers to build a custom block programming system by
specifying a single XML file. Google’s online visual script-
ing platform Blocky [22] uses interlocking, graphical blocks
to represent code concepts like variables, logical expressions,
loops and other basic programming patterns to export blocks

to programming languages like JavaScript, Python, PHP and
Lua.

On the other hand, node-based visual languages repre-
sent structures and data flow using logical nodes to reflect
a visual overview of data flow. GRaIL [9] was one of the
first systems that featured a visual scripting method for the
creation of computer instructions based on cognitive visual
patterns. More recently, Unity3D game engine has recently
announced at their 2020 roadmap [4] an embedded node-
based editor and a visual scripting system that will launch
with their next update.

2.4 Editing directly from theVR environment

The development of authoring tools in virtual reality systems
led to the integration of sophisticated functionalities. One
of them is the implementation of immersive VR editors for
the reconstruction of digital worlds directly from within the
virtual environment.

In SIGGRAPH 2017, Unity technologies presented Edi-
torVR [8], an experimental scene editor that encapsulates all
the Unity’s features within the virtual environment giving
developers the ability to create a 3D scene while wearing
the VR headset. EditorVR supports features for initially lay-
ing out a scene in VR, making adjustments to components
and building custom tools. Except from game engines, model
editors are also emerging into immersive VR model editing.
MARUI [1] is a plugin for Autodesk Maya that lets design-
ers perform modeling and animation tasks within the virtual
environment.

123

P. Zikas et al.

The available VR editors feature scenemanagement capa-
bilities with intuitive ways to build a scene directly from
within the virtual environment. However, there are no avail-
able authoring tools to offer a complete system for developing
a behavioral VR experience including both the design and the
programming aspect. The mentioned VR editors are mostly
focused to showcase examples of interaction and scene cre-
ation.

The state-of-the-art shows that the mentioned VR plat-
forms do not provide sufficient tools to generate training
simulations nor a complete methodology for representing
an educational process in VR. There is no similar platform
which encapsulates functionalities for training using visual
scripting and VR Editor combined. In addition, the bibliog-
raphy shows that the available visual scripting platforms lack
of solutions for VR training as they mostly concentrated on
the visualization of simple systems and learning of program-
ming.

For rapid adaptation to variations, a schematic repre-
sentation of VR experiences is critical to replicate training
scenarios and create a customized platform able to generate
new content with minimal changes. Such system is not cur-
rently available and as a result developers have to implement
content from scratch using third-party modalities and inte-
grating various SDKs into a single project. This approachwill
lead to complexprojects or even compatibility issues between
the different modalities. It is evident that a unified platform
is required to manage the communication of its embedded
modules while offering authoring tools for rapid content cre-
ation without external modules required.

3 Our solution

The main goal of this project is to implement and compare
three different authoring mechanics a) prototyped scripting,
b) visual scripting and c)VReditor for rapid reconstruction of
VR training scenarios based on our newly defined VR soft-
ware design patterns. In other words, the proposed system
facilitates a VR playground to recreate training scenarios.
From the developer’s perspective, this system constitutes a
Software Development Kit (SDK) to generate VR content,
which follows a well-structured educational pipeline. Our
platform was built as a plugin for Unity3D engine for effec-
tive setup and distribution.

We introduce the following contributions:

– Training scenegraph: We developed a dynamic, mod-
ular tree data structure to represent the training scenario
following a well defined educational curriculum. A train-
ing scenegraph tree stores data regarding the tasks where

the trainee is asked to accomplish, dismantling the edu-
cational pipeline into simplified elements and focusing
on one step at the time.

– Action prototypes: We designed reusable prototypes
based on VR software design patterns to transfer behav-
iors from the real to the virtual world. Action prototypes
populate the training scenegraph with interactive tasks
for the user to accomplish. They introduce a novel
methodology specially formulated for the development
of interactive VR content.

– Visual scripting: We integrated a Visual Scripting sys-
tem as an authoring tool to export training scenarios from
a node-based, coding-free user interface.

– VR editor: We embedded a run-time VR Editor within
the training scenarios to give user the ability to customize
and create new scenarios directly from within the virtual
environment.

– Pilot applications: Utilizing the proposed system, we
generated two pilot training scenarios: a) a REBOA
(Resuscitative Endovascular Balloon Occlusion of the
Aorta) training scenario and b) an antique clock restora-
tion.

In the following sections, we present the softwaremodules
and key functionalities of our system.

4 The training scenegraph

To achieve a goal, whether it is the restoration of a statue,
the repair of an engine’s gearbox or a surgical procedure the
trainee needs to follow a list of tasks. We are referring to
those tasks as Actions.

A simple visualization of a training scenario containing
Actions would be to link them in a single line one after
another. However, in complex training scenarios, a sequen-
tial representation would not be very convenient due to the
absence of classification and hierarchical visual representa-
tion. For this reason,we implemented the training scenegraph
architecture. Training scenegraph is a tree data structure rep-
resenting the tasks/Actions of a training scenario. The root of
the tree holds the structure, on the first depth we initialize the
Lesson nodes, then the Stage nodes and finally at leaf level
the Action nodes.

Oneof themain principles of this projectwas tomodify the
training scenegraph and Actions using three different editors
(scripting, visual scripting and the VR editor). To achieve
this, the scenegraph data are stored to an xml file offering
easy maintenance.

123

Immersive visual scripting based on VR software design patterns for…

Fig. 2 An example of a training scenegraph tree representing the simple
scenario of hanging a paint on the wall

5 Action prototypes

In this section, we analyze how we implemented new VR
software design patterns thought rapid prototyping.

5.1 The IAction interface

The Action object reflects a flexible structural module, capa-
ble of generating complex behaviors from basic elements.
This also reflects the concept idea behind the training scene-
graph; provide developers with fundamental elements and
tools to implement scenarios from basic principles. Each
Action is described by a script containing its behavior in
means of physical actions in the virtual environment. Tech-
nically, each Action script implements the IAction interface,
which defines the basic rules every Action should follow,
ensuring that all Actions will have the same methods and
structure. Below,we present the components of IAction inter-
face.

– Initialize: This method is responsible to instantiate all
the necessary 3D objects for the Action to operate.

– Perform: This method completes the current Action and
deletes unused assets before the next Action starts.

– Undo: This method resets an Action including the
deletion of instantiated 3D assets and the necessary pro-
cedures to set the previous Actions.

– Clear: Clears the scene from initialized objects and ref-
erences from the Action.

Designing a shared interface among the structural ele-
ments of a system is the first step to prototype commonly used
components. Thismethodology is both beneficial for the user
and the developer: a) users are introduced with interactive
patterns that are familiar with, avoiding complex behaviors
while b) developers are following the same implementation
patterns.

Fig. 3 Action Prototypes Architecture diagram

5.2 From actions to VR design patterns

Tomake our systemmore efficient, we have to limit the capa-
bilities of the Action entity targeting simple but commonly
used tasks in training. Modeling those behaviors, we will
generate a pool of generic behavioral patterns suitable for
VR applications.

The implementation of Action prototypes was highly
inspired by Game Programming Patterns [19] as an alterna-
tive paradigm for VR experiences. The immersion of virtual
environments causes the implementation of programming
patterns to fit into a more interactive way of thinking. For
this reason, the software patterns developed in this project
designed to match the needs for interactivity, embodied cog-
nition and physicality on VR experiences. For this reason,
we implemented the following Action Prototypes:

– Insert action: is referring to the insertion of an object to
a predefined position. Technically, to implement an Insert
Action, the developer needs to set the initial and the final
position of an object.

– Remove action: describes a step in which the user has
to remove an object using his hands. To implement a
RemoveAction the developer needs to define the position
where the object will be instantiated, for user to reach and
remove it.

– Use action: refers to a step where the user needs to inter-
act with an object over a predefined area for a period
of time. Figure 3 illustrates an architectural diagram of
Action Prototypes to visualize their dependencies.

Action Prototypes constitute a powerful software pattern
to implement interactive tasks in VR experiences. Unitizing
Action Prototypes, developers can replicate custom behav-
iors with a few lines of code taking advantage of their
abstraction and reusability. New Action Prototypes can be
easily implemented and extended due to their abstraction.

123

P. Zikas et al.

Fig. 4 Top: Insert Action from the clock’s maintenance use case. Bot-
tom: Insert Action from the REBOA use case. The green holograms
indicate the correct position of 3D objects

5.3 Alternative paths

The Action prototypes propose a new design pattern for VR
experiences, a modular building block to develop applica-
tions in combination with the training scenegraph. However,
the proposed training scenegraph architecture generates VR
experiences following a linear pipeline ofActionswhere user
needs to complete a predefined list of tasks. In order to trans-
form the training scenegraph froma linear tree into a dynamic
graph, we introduced Alternative Paths.

A training scenario can lead to multiple paths according
to the user’s actions and decisions, scenegraph adapts. In
addition, certain actions or even wrong estimations and tech-
nical errorsmay deviate the original training scenario from its
normal path causing the training scenegraph to modify itself
accordingly. Except for backtracking afterwrong estimations
and errors, the Alternative Path mechanic is also used in sit-
uations where the trainee needs to make a particular decision
over a dilemma. From a technical perspective, Actions are
able to trigger alternative path events. Those events will be
advanced to training scenegraph informing about the nec-
essary follow-up actions. The scenegraph tree will update
its form accordingly by pruning or adding new nodes to its
structure to adapt to the new circumstances.

Fig. 5 The uncanny valley of interactivity. Correlation between User
experience (UX) and interaction in VR

5.4 The uncanny valley of interactivity andVR UX

After experimenting with various design patterns and inter-
action techniques for VR, an interesting pattern appeared
regarding the correlation of user experience and the inter-
activity of the VR application (Fig. 5). An immersive
experience relies significantly on the implemented interac-
tive capabilities that form the user experience. As a result,
to make an application more attractive in means of UX a
more advanced interactive system is needed. However, as we
implement more complex interaction mechanics there is a
point in timeline where the UX drops dramatically. At this
point, the application is too advanced and complex for the
user to understand and perform the tasks with ease. We char-
acterize this feature as heterogeneous behaviorism meaning
that user’s actions do not follow a deterministic pattern result-
ing in the inability to complete the implemented Actions due
to their incomprehensible complexity.

In contrast, applications with limited interactivity follow
a linear increase in their user experience. From applications
where users are only observers (360VR videos) to cognitive
applications, the interaction curve is linear and VR experi-
ences easy to understand.

There are two ways to overcome the uncanny valley: a)
drastically enhance the interactivity capabilities aiming for
a psycomotor simulation or b) reducing complexity aiming
for a cognitive application and make users understand how
they are supposed to act in the virtual world. Over-passing
the valley of interactivity, applications are evolving rapidly
to follow a psychomotor methodology integrating embodied
cognition for better UX. In contrast, cognitive applications
lack of realism, but they offer intuitive and easy to follow
mechanics. The choice depends on the design and the genre
of the application.

123

Immersive visual scripting based on VR software design patterns for…

Fig. 6 A training scenario visualized from the Visual Scripting Edi-
tor featuring from right to left: Lessons (red), Stages (green), Actions
(blue), Action Scripts (gray) and Prefab nodes (brown). Prefabs are rep-

resenting 3D objects in the virtual environment. For example, an Insert
Action contains two prefabs: the interactable item and its final position

6 Visual scripting

The training scenegraph model is capable of generating
applications from reusable fundamental elements (Actions)
supporting basic insert, remove and use behaviors in VR.
However, what is the next step?What can be done to enhance
the development process and speed up content creation? The
complexity of scenegraph xml may cause difficulties visual-
izing the scenegraph nodes, especially for extended training
scenarios. Another point is the programming skills required
do develop such experiences. Using the proposed architec-
ture could be challenging for inexperienced programmers

To eliminate the mentioned difficulties, we introduce
visual scripting as an authoring tool to manage, maintain
and develop VR experiences. Visual scripting encapsulates
all the functionalities from the base model while offering
high visualization capabilities.

6.1 The visual scriptingmetaphor

The development of a visual scripting system as an assistive
tool aimed to visualize the VR training scenario in a con-
venient way, if possible fit everything into one window. The
simplicity of this tool was carefully measured to provide tool
used also from non-programmers. From the beginning of the
project, one of themain design principles was to strategically
abstract the software building blocks into basic elements. The
main idea behind this abstractionwas the improvement of the
visual scripting and VR editor tools since fundamental ele-
ments construct a better visual representation than complex

ones. To render the visual nodes, we exploited Unity Node
Editor Base (UNEB), an open-source framework, which pro-
vides basic node rendering.

Moving into the visual scripting metaphor, the training
scenegraph data structure forms a dynamic tree, visualiz-
ing the scenario into a node-based editor with nodes linked
together forming logical segments. To construct visual nodes,
our system retrieves data from the Action scripts through
reflection and run-time compilation. An example of a com-
plete diagram representing a training scenario is illustrated
in Fig. 6. Developers can utilize visual scripting to generate
training scenarios through interactive UIs transforming the
VR content generation into a coding-free process.

6.2 Dynamic code generation

Visual scripting generates run-time simple Action scripts uti-
lizing the information provided from the visual input. After
completing the visual construction of an Action, the next
step is to generate the Action script to save the implemented
behavior in a C# code script.

To write C# code run-time, we used CodeDOM [28], a
build-in tool for .NET Framework that enables run-time code
generation and compilation. The abstraction of Action proto-
types offers an elegant implementation to generate each script
using a single virtual method. To finalize the Action script,
except the Action Type (Insert, Remove or Use) we also need
the interactive behavior. Action prototypes retrieve this infor-
mation directly from the visual scripting editor through the
linked nodes relative to the Action module.

123

P. Zikas et al.

6.3 Expanding auto-generated scripts

Visual scripting generates a basicAction script containing the
Initialize method, the minimum requirement for an Action
to run properly. However, there are cases where developers
need to implement significantly complex Action behaviors
to enhance use experience.

Prototyped Actions were developed using a particular
software architecture capable of providing the fundamental
facilities but also customize Actions according to the devel-
oper’s preferences. The Perform method can be overridden
directly from theAction script to extend theAction’s capabil-
ities. The same principle is applicable to all the other virtual
methods defined in the IAction interface (Undo, Initialize,
etc.). For additional modifications, the best practice is to edit
directly the generated script and override the declared IAc-
tionmethods. In this way, wemaintain simple scripts but also
provide custom implementations upon request.

7 VR editor

The visual scripting system enhanced the usability and
effectiveness of the scenegraph system to generate gami-
fied training scenarios through a coding-free platform. The
impact on content creation was very strong due to the addi-
tional tools and features that introduced. However, visual
scripting lacks on one specific and rather important fea-
ture: the ability to design on-the-go behaviors and scenarios
directly within the virtual environment. This feature will
improve design capabilities while offering an intuitive way
to modify applications directly from the virtual environment.

The implementation of VR editor was designed as an
authoring tool on top of the training scenegraph architec-
ture, utilizing the developed features of our system. This
interactive tool reduces the time needed to produce train-
ing scenarios due to the rapid in-game generation of training
scenarios. In addition, certain interactive behaviors are better
designed directly from VR due to the 3D perspective of the
medium.

7.1 TheVRmetaphor

The main concept behind the implementation of our VR edi-
tor focuses on an interactive system with floppy disks and a
personal computer. Figure 7 illustrates the design of our VR
editor along with its various components and floppy disks.
The training scenegraph nodes are represented by floppy
drives on the left side of the screen. Action scripts are initial-
ized as floppy disks, each one holds the script behavior that
defines the 3D objects relative to the Action. There are three
types of floppy disk separated with unique coloration; blue

Fig. 7 Interactingwith theVReditor.User holds aUseActionpreparing
to generate the Action behavior

disks represent Use Actions, red disk the Remove Actions
and black disks the Insert Actions.

7.2 Generate actions and parametrization on-the-go

The functionality with the higher impact on the VR editor is
by far the ability to modify and parametrize Actions on-the-
go. This was also themain reason that led us to implement the
VR editor as an additional authoring tool within the virtual
environment, to support coding-free development and give
the user the ability to modify or even generate new behaviors
while experiencing the training scenario.

Users can customize the scenegraph through VR editor by
adding or deleting Scenegraph nodes to match their needs.
This functionality has a serious impact on users that want
to parametrize existing VR training scenarios or create their
own without having any programming knowledge. We pro-
vide this ability via an interactive UI on the VR editor with
physical buttons where users can modify the training scene-
graph.

The next step is the script generation from the VR editor.
To generate a new Action, users need to insert a floppy disk
into the drive representing the Action script (Insert, Remove
or Use). The systemwill register the insertion of floppy disks
and an empty Action script will appear on VR editor screen
ready for modification.

With VR editor, users are no longer just observers, they
can modify the training scenarios on-the-go, implement new
ideas and fix wrong Action behaviors without specialized
programming knowledge.

8 Evaluation

To examine the overall experience of using our system, we
conducted a preliminary user-based evaluation with 18 users
[18]. The main research questions were the following:

123

Immersive visual scripting based on VR software design patterns for…

Table 1 Participants’ demographics with regard to their expertise in
VR and SD

None Little Medium Good Excellent

VR 7 2 0 5 4

SD 8 1 0 2 7

– For the VR training application: what is the overall
perceived quality of the VR training environment and
perceived educational value?

– For the Visual scripting tool: can users successfully com-
plete basic programming tasks and how do they rate the
overall experience?

– For the VR editor tool: can users successfully complete
basic adjustments to an existing training scenario and
how do they rate the overall experience?

8.1 Methodology and participants

The experiment was divided into three separate sessions, one
for each tool. In the first session, the participants were asked
to restore an antique clock following the instructions given
by the VR training application (Clock repair scenario). In
the second session, the participants were shown the capabil-
ities and functionalities of the Visual Scripting tool. Then,
they were asked to use the tool to generate code for a “Use”
action (’Use the sponge to wipe dirty spot on the clock’) and
a “Remove” action (‘Remove seal from two-sided gear’).
Finally, in the third session, the participants were asked to
complete two tasks to adjust the clock restoration training
scenario directly from the VR environment using the VR
editor tool.

A 10-point Likert Scale questionnaire was given at the
end of each session to rate the parameters identified in the
research questions. For the ‘educational’ value of the VR
training application, participants were also asked to indicate
which steps they retained regarding the restoration process.
In addition, metrics such as the number of help requests and
time on task were recorded for further analysis of the results.
Finally, at the end of the experiment, a semi-structured
interview was conducted to capture participants’ general
impression of the whole system.

Eighteen people participated in our experiment, 11 males
and 7 females. All users were in the 25–35 age range. They
were selected based on the level of expertise in using VR
applications and level of expertise in Software Development
(SD), ensuring an equal number of expert and non-expert
participants in each one of the two categories, as illustrated
in Table 1 below [18,27]

Table 2 VR training application - rating scores

All Experts Non-experts

Percieved quality of VR experience

Avg 8.67 8.22 9.11

StDev 1.029 1.202 0.601

CI 0.512 0.924 0.462

Percieved educational value

Avg 8.78 8.67 8.89

StDev 8.88 1.00 0.78

CI 0.43 0.769 0.601

Recall activity score

Avg 9.26 8.93 9.63

StDev 1.30 1.66 0.73

CI 0.65 1.28 0.56

CI 95% Confidence interval

8.2 Results

8.2.1 First session: VR training application

The perceived quality of the VR experience was on average
highly rated by all participants (8.6/10). The average rating
of VR experts was somewhat lower than that of non-experts,
but the difference was not statistically significant, as revealed
by a paired t-test analysis (t(8)=−1.83, p=0.1).

Equally high was the overall average rating score the
application received in terms of the perceived educational
value (8.78/10). Small differences were exhibited between
VR experts and non-experts; however, no statistical signifi-
cance was identified (t(8)=−0.45, p=0.66).

The participants also scored rather high in the exercise
where they indicated which steps they could recall from the
restoration process (9.26/10). A comparison of the achieved
score between the two groups did not indicate a statistically
important difference (t(8)=−1.08, p=0.31).

Time on task and the number of help requests were
recorded to support further analysis of participants’ ratings
with regard to the effort they invested. All participants were
able to complete the steps of the training scenario success-
fully andwithin a reasonable time (2:50minutes on average).
Slightly higher completion time was recorded on aver-
age for the non-experts, but with no statistical significance
(t(8)=−1.5, p=0.17). However, there was a statistically sig-
nificant difference in the number of help requests between
the two groups (t(8)=−4.6, p=0.001), as expected, due to
the inexperience of the users.

8.2.2 Second session: visual Scripting tool

All participants rated highly the perceived easiness of com-
pleting the two given script tasks with the Visual Scripting

123

P. Zikas et al.

Table 3 VR training application—time on task and number of help
requests

All Experts Non-experts

Time (min)

Avg 2:50 2:38 3:03

StDev 0:59 1:00 1:00

CI 0:29 0:46 0:46

of help requests

Avg 2.56 1.78 3.33

StDev 1.20 0.97 0.87

CI 0.60 0.75 0.67

Table 4 Visual Scripting—perceived task easiness for Task 1 (T1) and
Task 2 (T2)

All Experts Non-experts
T1 T2 T1 T2 T1 T2

Avg 8.00 8.28 8.44 8.67 7.56 7.89

StDev 1.19 0.95 1.13 1.00 1.13 0.78

CI 0.59 0.48 0.87 0.77 0.87 0.60

tool. However, paired t-testing revealed a statistically sig-
nificant difference in the scores received for Task 1 by the
SD experts and by the non-experts; t(4)=−5.66, p=0.005.
Similarly, there was a statistically significant difference in
the scores received for Task 2 by the SD experts and the
non-experts; t(8)=2.8, p=0.02.

These observations are aligned with the differences in the
measurements of time on task and number of help requests
between the SD experts and the non-experts. As shown in
Table 4, non-experts required both more time and assis-
tance. Paired t-testing confirmed that the differences carried
a statistical significance both for time on task (t(8)=−14.69,
p=0.0000004) and number of help requests (t(8)=−2.25,
p=0.05).

Nevertheless, it is interesting that the additional required
effort by non-experts to complete the tasks did not affect their
overall experience with the tool. In fact, all participants rated
highly the overall experience of using this tool (8.61/10),
without any statistical difference between the two groups;
t(8)=−1.1, p=0.3.

8.2.3 Third session: VR editor tool

The participants also rated highly the perceived easiness of
completing the two tasks for the VR Editor tool evaluation.
Just like in theVisual Scripting tool, the SD experts found the
tasks easier than non-experts, a difference which was iden-
tified as statistically important both for Task 1 (t(8)=2.56,
p=0.02) and Task 2 (t(8)=2.34, p=0.04).

Table 5 Visual Scripting—time on task, number of help requests (for
the entire scenario) and overall experience

All Experts Non-experts

Time (min)

Avg 12:36 9:41 17:31

StDev 4:14 1:02 1:32

CI 2:06 0:47 1:11

of help requests

Avg 2.89 2.11 3.67

StDev 1.41 1.54 0.71

CI 0.70 1.18 0.54

Overall experience

Avg 8.61 7.88 8.44

StDev 0.98 0.78 1.13

CI 0.49 1.13 0.86

Table 6 VR Editor—perceived task easiness for Task 1 (T1) and Task
2 (T2)

All Experts Non-experts
T1 T2 T1 T2 T1 T2

Avg 7.50 7.06 8.29 7.67 6.89 6.44

StDev 1.26 1.39 1.38 1.66 0.78 0.73

CI 0.67 0.69 1.28 1.27 0.60 0.56

Differences were exhibited on the time on task and the
number of help requests between the SD experts and the
non-experts as expected and in alignment with the perceived
ease of completing the tasks. Paired t-testing confirmed that
the differences carried a statistical significance both for time
on task (t(8)=−7.1, p=0.0009) and for the number of help
requests: (t(8)=−3.05, p=0.01).

Just like the observed results in the second session with
regard to the overall experience, non-experts gave equally
high rates to the overall experience as the experts, despite
the extra time and effort required to complete the tasks.
The overall experience score was 7.61/10, while no statisti-
cally important difference between the groups was observed
(t(8)=0.5, p=0.6).

In conclusion, all participants regardless of their expertise
in VR and SD were able to successfully complete the tasks.
The non-experts did—as expected—require more time and
assistance, but did not seem to affect their overall experience
in using the tools. The results of the evaluation matched the
general sentiment of the participants about the overall suite
expressed through the positive comments in semi-structured
interviews, as well as through responding to a corresponding
question in the questionnaire (Fig.8).

123

Immersive visual scripting based on VR software design patterns for…

Table 7 VR Editor—time on task, number of help requests (for the
entire scenario) and overall experience

All Experts Non-experts

Time (min)

Avg 13:24 9:08 17:39

StDev 5:00 2:52 2:03

CI 2:29 2:12 1:35

of help requests

Avg 2.83 2.22 3.44

StDev 1.04 0.97 0.73

CI 0.52 0.75 0.56

Overall experience

Avg 7.61 7.77 7.44

StDev 1.09 1.09 1.13

CI 0.54 0.84 0.86

Fig. 8 Experience scores for each one of the authoring tools and the
overall suite

9 Conclusions and future work

In this work, we presented a novel system capable of gen-
erating gamified training experiences exploiting its modular
architecture and the authoring tools we developed. We intro-
duced the scenegraph as a dynamic, acyclic data structure
to represent any training scenario following an educational
curriculum. In addition, we proposed a category of new
software design patterns, the Action prototypes, specially
formulated for interactiveVRapplications. Finally,we devel-
oped a visual scripting tool alongwith aVR editor to enhance
the visualization and speed up content creation.

Our System has certain limitations linked with its compo-
nents and functionalities. First of all, the evaluation process
highlighted weaknesses in the interaction with the VR edi-
tor. Although it behaves well in Action customization, the
script generation process is still complex due to the amount
of information and steps needed from the user. In addition,
some of its interactive components are not intuitive, resulting
in the frustration of users when asked to implement certain
behaviors. Finally, regarding the visual scripting editor, the

real-time compilation process may cause performance issues
in complex training scenarios and delay the initialization of
scenegraph. These findings will be addressed, before pro-
ceeding to large-scale evaluations, to further evaluate the
usability, usefulness and overall user experience of the tools.

To overcome the UX limitations, we aim to simplify
our system by adding an additional observer on both the
VR learning modules and the development pipeline. This
observer will identify whenever the user does not know how
to proceed and will provide with additional details in form
of UIs and vocal guidance. In addition, we aim to include
a holographic guidance during the VR training scenarios to
enhance all Actions with visual information on how to com-
plete each step.

The purpose of the preliminary evaluation was to get an
overall impression of the authoring tools. This did not allow
for in-depth analysis of each tool separately, in terms of effec-
tiveness and efficiency. This is a known limitation that will
be rectified by conducting further testing for each tool sepa-
rately in future iterations, involving representative users from
target user populations, such as the medical domain.

In the future, we aim to utilize computer vision to capture
the trainer’s movements from external cameras or directly
from within the virtual environment to automatically gener-
ate interactive behaviors in VR. Another idea is to collect this
data through video from a real-life scenario by monitoring
the trainer and afterward processing the data using machine
learning to extract important key features and construct a
template of the training scenario.

Acknowledgements This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under
grant agreement No 871793 (ACCORDION) and No727585 (STARS-
PCP) and supported by Greek national funds (projects VRADA and
vipGPU).

References

1. MARUI 3 plugin for Autodesk Maya. https://www.marui-plugin.
com/marui3/. Accessed 30 July 2020

2. Our clinical trial (citation not provided for the reviewing process)
3. Our VR training platform (citation not provided for the reviewing

process)
4. Unity 2020 roadmap. https://unity3d.com/unity/roadmap
5. Alsumait, A., Almusawi, Z.S.: Creative and innovative e-learning

using interactive storytelling. Int. J. Pervasive Comput. Com-
mun. 9(3), 209–226 (2013). https://doi.org/10.1108/IJPCC-07-
2013-0016

6. Andersen, S.A.W., Konge, L., Cayé-Thomasen, P., Sørensen,M.S.:
Retention of mastoidectomy skills after virtual reality simulation
training. JAMA Otolaryngol. Head Neck Surg. 142(7), 635–640
(2016). https://doi.org/10.1001/jamaoto.2016.0454

7. Bouchard, S., Dumoulin, S., Robillard, G., Guitard, T., Klinger,
E., Forget, H., Loranger, C., Xavier Roucaut, F.: Virtual reality
compared with in vivo exposure in the treatment of social anxiety

123

https://www.marui-plugin.com/marui3/
https://www.marui-plugin.com/marui3/
https://unity3d.com/unity/roadmap
https://doi.org/10.1108/IJPCC-07-2013-0016
https://doi.org/10.1108/IJPCC-07-2013-0016
https://doi.org/10.1001/jamaoto.2016.0454

P. Zikas et al.

disorder: a three-arm randomised controlled trial. Br psychiatr J
Ment sci 210, (2016). https://doi.org/10.1192/bjp.bp.116.184234

8. Ebrahimi, A., West, T., Schoen, M., Urquidi, D.: Unity: Editorvr.
In: ACM SIGGRAPH 2017 Real Time Live!, SIGGRAPH ’17,
pp. 27–27. ACM, New York, NY, USA (2017). https://doi.org/10.
1145/3098333.3098918

9. Ellis, T.O., Heafner, J.F., Sibley, W.L.: The grail project: an experi-
ment in man-machine communications (RM-5999-ARPA). RAND
Corporation, Santa Monica (1969)

10. de Faria, J.W.V., Teixeira, M.J., de Moura Sousa Júnior, L., Otoch,
J.P., Figueiredo, E.G, : Virtual and stereoscopic anatomy: when
virtual reality meets medical education. J. Neurosurg. JNS 125(5),
1105–1111 (2016)

11. Ganier, F., Hoareau, C., Tisseau, J.: Evaluation of procedural
learning transfer from a virtual environment to a real situa-
tion: a case study on tank maintenance training. Ergonomics
10(1080/00140139), 899628 (2014)

12. Greenleaf, W.: How vr technology will transform healthcare. In:
ACM SIGGRAPH 2016 VR Village, pp. 1–2 (2016). https://doi.
org/10.1145/2929490.2956569

13. Greenwald, S., Kulik, A., Kunert, A., Beck, S., Froehlich, B., Cobb,
S., Parsons, S., Newbutt, N., Gouveia, C., Cook, C., Snyder, A.,
Payne, S., Holland, J., Buessing, S., Fields, G., Corning, W., Lee,
V., Xia, L., Maes, P.: Technology and applications for collaborative
learning in virtual reality. In: CSCL (2017)

14. Göbel, S., Salvatore, L., Konrad, R.: Storytec: A digital storytelling
platform for the authoring and experiencing of interactive and non-
linear stories. In: 2008 International Conference on Automated
Solutions for Cross Media Content and Multi-Channel Distri-
bution, pp. 103–110 (2008). https://doi.org/10.1109/AXMEDIS.
2008.45

15. Kotis, K.I.: Artist–a real-time low-effort multi-entity interaction
system for creating reusable and optimized MR experiences. Res.
Ideas Outcomes 5, e36464 (2019). https://doi.org/10.3897/rio.5.
e36464

16. Monahan, T., McArdle, G., Bertolotto, M.: Virtual reality for
collaborative e-learning. Comp. Educ. 50(4), 1339–1353 (2008).
https://doi.org/10.1016/j.compedu.2006.12.008

17. Murcia-López, M., Steed, A.: A comparison of virtual and phys-
ical training transfer of bimanual assembly tasks. IEEE Trans.
Vis. Comp. Gr. 24(4), 1574–1583 (2018). https://doi.org/10.1109/
TVCG.2018.2793638

18. Nielsen, J.: Usability testing. In: Nielsen, J. (ed.) Usability Engi-
neering, pp. 165–206. Morgan Kaufmann, San Diego (1993)

19. Nystrom, R.: Game Programming Patterns, 3rd edn. Genever Ben-
ning (2014)

20. Pan, X., Hamilton, A.: Why and how to use virtual reality to
study human social interaction: the challenges of exploring a new
research landscape. Br. J. Psychol. (2018). https://doi.org/10.1111/
bjop.12290

21. Papagiannakis, P., Trahanias, G., Kenanidis, E., Tsiridis, E.: Psy-
chomotor Surgical Training in Virtual Reality.Master Case Series
and Techniques, pp. 827–830. Adult Hip, Springer, Cham (2017)

22. Pasternak, E., Fenicheland, R., Marshall, A.N.: Tips for creat-
ing a block language with blockly. In: 2017 IEEE Blocks and
Beyond Workshop (B B), pp. 21–24 (2017). https://doi.org/10.
1109/BLOCKS.2017.8120404

23. Pfeiffer-Leßmann, N., Pfeiffer, T.: Exprotovar: a lightweight tool
for experience-focused prototyping of augmented reality applica-
tions using virtual reality. In: Stephanidis, C. (ed.) HCI Interna-
tional 2018—Posters’ Extended Abstracts, pp. 311–318. Springer
International Publishing, Cham (2018)

24. Roque, R.: Openblocks : an extendable framework for graphical
block programming systems (2008)

25. Slater, M.: Implicit Learning Through Embodiment in Immersive
Virtual Reality, pp. 19–33. Springer, Singapore (2017)

26. Stefanidi, E., Arampatzis, D., Leonidis, A., Papagiannakis, G.:
BricklAyeR: A Platform for Building Rules for AmI Environments
in AR, pp. 417–423 (2019)

27. Tullis, T., Albert, W.: Measuring the User Experience, Second Edi-
tion: Collecting, Analyzing, and Presenting Usability Metrics, 2nd
edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2013)

28. Villela, R.: Working with the CodeDOM, pp. 155–177. Apress,
Berkeley, CA (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Paul Zikas is a software engi-
neer with experience in AR and
VR applications. He worked as an
undergraduate researcher at the
Computer Vision and Robotics
Laboratory at FORTH studying
Serious Games and Storytelling in
Mixed Reality while participating
in EU programs. As an enthusiast
in Computer Graphics and Game
Programming, he designed var-
ious Mixed Reality applications
for educational and entertainment
purposes in mobile and desktop.
He earned his BSc and MSc in

Computer Science from the University of Crete specializing in com-
puter graphics. Currently, he is Lead Developer at ORamaVR and a
PhD student at the University of Crete.

George Papagiannakis is a com-
puter scientist specialized in com-
puter graphics and virtual-
augmented reality. He obtained his
PhD in Computer Science at the
University of Geneva in Switzer-
land in 2006, his M.Sc. in
Advanced Computing at the Uni-
versity of Bristol and his B.Eng.
in Computer Systems Engineer-
ing, at the University of Manch-
ester. He is Associate Professor of
Computer Graphics at the Com-
puter Science department of the
University of Crete, Greece and

Affiliated Research Fellow at the Computer Vision and Robotics Lab-
oratory in the Institute of Computer Science of the Foundation for
Research and Technology Hellas and co-founder/CTO at ORamaVR.

123

https://doi.org/10.1192/bjp.bp.116.184234
https://doi.org/10.1145/3098333.3098918
https://doi.org/10.1145/3098333.3098918
https://doi.org/10.1145/2929490.2956569
https://doi.org/10.1145/2929490.2956569
https://doi.org/10.1109/AXMEDIS.2008.45
https://doi.org/10.1109/AXMEDIS.2008.45
https://doi.org/10.3897/rio.5.e36464
https://doi.org/10.3897/rio.5.e36464
https://doi.org/10.1016/j.compedu.2006.12.008
https://doi.org/10.1109/TVCG.2018.2793638
https://doi.org/10.1109/TVCG.2018.2793638
https://doi.org/10.1111/bjop.12290
https://doi.org/10.1111/bjop.12290
https://doi.org/10.1109/BLOCKS.2017.8120404
https://doi.org/10.1109/BLOCKS.2017.8120404

Immersive visual scripting based on VR software design patterns for…

Nick Lydatakis graduated from
Computer Science department,
University of Crete. He started as
a research fellow at the Institute
of Computer Science of the Foun-
dation for Research and Technol-
ogy - Hellas, on Computational
Vision and Robotics Laboratory.
He works in the fields of VR from
2015. He is currently working at
ORamaVR as Head of Product
Development.

Steve Kateros has obtained his
bachelor degree at the Computer
Science Department, University of
Crete. A skilled C++, C# devel-
oper mostly focused in Game and
Graphics Development and with a
lot of interest in VR applications.
A two year undergrad researcher
at ICS-FORTH, and he is cur-
rently working at ORamaVR as
a Product Manager and VR User
Experience and Level Design.

Stavroula Ntoa holds a Ph.D.
in “Information Systems and
Human-Computer Interaction”,
from the Computer Science
Department of the University of
Crete. She is a member of the
Human-Computer Interaction
(HCI) Laboratory of ICS-FORTH
since 2000. She is experienced in
the design, development and eval-
uation of accessibility software for
motor-impaired users, and acces-
sible web applications. She has
expertise in UX design and eval-
uation in a number of projects in

various contexts and application domains, including responsive web,
big data, mobile, as well augmented and virtual reality applications.
Her current work focuses on user experience design and evaluation in
intelligent environments.

Illa Adami holds an M.B.A in
Information Management from
California State University, San
Bernardino. She worked in the
USA for seven years at Environ-
mental Systems Research Insti-
tute (ESRI-California). Her main
responsibilities included user
requirements analysis, information
architecture, and prototype design-
ing for various web applications
for the company. Ilia has been a
member of the Human-Computer
Interaction (HCI) Laboratory of
the ICS - FORTH since 2007. She

specializes in UX design, usability and accessibility evaluations in var-
ious technology domains and contexts and has participated in numer-
ous scientific projects.

Constantine Stephanidis is Pro-
fessor of Human Computer Inter-
action at the Department of Com-
puter Science of the University
of Crete. He is the Founder and
Head (since 1989) of the Human -
Computer Interaction Laboratory,
and (since 2004) the Founder and
Head of the Ambient Intelligence
Programme at the Institute of
Computer Science of FORTH,
where he also served as Direc-
tor between 2004 and 2016. He
is the Founder and Editor-in-Chief
(since 2000) of the Springer inter-

national journal “Universal Access in the Information Society” and
the co-Editor (since 2016) of the T&F International Journal of Human
Computer Interaction. http://www.ics.forth.gr/hci/Stephanidis.php

123

http://www.ics.forth.gr/hci/Stephanidis.php

	Immersive visual scripting based on VR software design patterns for experiential training
	Abstract
	1 Introduction
	2 Related work
	2.1 The impact of VR in training and education
	2.2 Authoring tools for content creation
	2.3 Visual programming
	2.4 Editing directly from the VR environment

	3 Our solution
	4 The training scenegraph
	5 Action prototypes
	5.1 The IAction interface
	5.2 From actions to VR design patterns
	5.3 Alternative paths
	5.4 The uncanny valley of interactivity and VR UX

	6 Visual scripting
	6.1 The visual scripting metaphor
	6.2 Dynamic code generation
	6.3 Expanding auto-generated scripts

	7 VR editor
	7.1 The VR metaphor
	7.2 Generate actions and parametrization on-the-go

	8 Evaluation
	8.1 Methodology and participants
	8.2 Results
	8.2.1 First session: VR training application
	8.2.2 Second session: visual Scripting tool
	8.2.3 Third session: VR editor tool

	9 Conclusions and future work
	Acknowledgements
	References

